(19) **日本国特許庁(JP)**

(12) 特 許 公 報(B2)

(11) 特許番号

特許第3674878号 (P3674878)

(45) 発行日 平成17年7月27日(2005.7.27)

(24) 登録日 平成17年5月13日(2005.5.13)

(51) Int.C1.⁷

FI

GO2B 6/12 GO2B 6/13 GO2B 6/12 GO2B 6/12 N M

請求項の数 5 (全 19 頁)

(21) 出願番号 特願平7-194040

(22) 出願日 平成7年7月7日(1995.7.7)

(65) 公開番号 特開平9-21920

(43) 公開日 平成9年1月21日 (1997.1.21) 審查請求日 平成12年1月19日 (2000.1.19) 審判番号 不服2002-20994 (P2002-20994/J1) 審判請求日 平成14年10月30日 (2002.10.30) |(73)特許権者 000004226

日本電信電話株式会社

東京都千代田区大手町二丁目3番1号

(74)代理人 100121670

弁理士 入戸野 巧

(74)代理人 100121669

弁理士 本山 泰

|(72)発明者 松浦 徹

東京都千代田区内幸町1丁目1番6号 日

本電信電話株式会社内

(72)発明者 小勝負 信建

東京都千代田区内幸町1丁目1番6号 日

本電信電話株式会社内

最終頁に続く

(54) 【発明の名称】ポリイミド光導波路

(57)【特許請求の範囲】

【請求項1】

基板上に積層したコア層とクラッド層からなる光導波路において、上記コア層及びクラッド層が共に2種類以上のポリイミドの共重合体であって、このポリイミド共重合体の基板面と平行な方向の屈折率(n_{TM})と基板面に垂直な方向の屈折率(n_{TM})の差(n_{TE} - n_{TM})を複屈折とし、上記コア層を構成するポリイミド共重合体の複屈折と上記クラッドを構成するポリイミド共重合体の複屈折と上記クラッドを構成するポリイミド共重合体の複屈折と上記クラッドを構成するポリイミド共重合体の複屈折と上記クラッドを構成するポリイミド共重合体の複屈折との相違が、共重合比によらず波長1.3μmにおいて0.002以下であるポリイミド共重合体から構成され、更にその共重合比を変化させることでコアとクラッドの間の屈折率差を制御することを特徴とするポリイミド光導波路。

10

【請求項2】

光導波路に用いるポリイミド共重合体が下記一般式(化1):

【化1】

及び下記一般式(化2):

【化2】

で表される繰り返しからなるポリイミド共重合体において R 2 及び R 2 がそれぞれ下記式 (化3):

【化3】

$$R_1$$
 h^c F_3 C

$$R_1 t' \longrightarrow 0 \longrightarrow \tau$$
 $R_2 t'' \longrightarrow SO_2 \longrightarrow T t t \longrightarrow C$

20

で表される繰り返しからなるポリイミドの共重合体であることを特徴とする請求項1に記 載のポリイミド光導波路。

【請求項3】

光導波路に用いるポリイミド共重合体が下記一般式(化4):

及び下記一般式(化5):

【化5】

で表される繰り返しからなるポリイミド共重合体において R₃ 及び R₄ がそれぞれ下記式 (化6):

【化6】

で表される繰り返しからなるポリイミドの共重合体であることを特徴とする請求項<u>1</u>に記載のポリイミド光導波路。

10

【請求項4】

光導波路に用いるポリイミド共重合体が下記一般式(化7):

【化7】

20

及び下記一般式(化8):

【化8】

で表される繰り返しからなるポリイミドの共重合体であることを特徴とする請求項<u>1</u>に記 30載のポリイミド光導波路。

【請求項5】

光導波路に用いるポリイミド共重合体が下記一般式(化9):

【化9】

及び下記一般式(化10):

40

【化10】

で表される繰り返しからなるポリイミドの共重合体であることを特徴とする請求項<u>1</u>に記載のポリイミド光導波路。

【発明の詳細な説明】

[0001]

30

40

50

【発明の属する技術分野】

本発明は光導波路に関し、特に優れた耐熱性に加えて光の偏波方向に対する光損失等の光導波特性の相違が小さい高分子光導波路に関する。

低損失光ファイバの開発による光通信システムの実用化に伴い、種々の光通信用部品の開

[0002]

【従来の技術】

発が望まれている。またこれら光部品を高密度に実装する光配線技術、特に光導波路技術の確立が望まれている。これらの光部品の材料として、これまで光透過性と耐熱性に優れた石英が主に検討されている。一方、ポリメチルメタクリレート(PMMA)、ポリスチレン(PS)、ポリカーボネート(PC)等の透明性に優れた高分子もまた、 1 加工性に優れる、 2 部品の大面積化が可能、 3 屈折率を幅広い範囲で制御できる、 4 柔軟性、耐衝撃性に優れる等、上記光部品材料として優れた特徴を有している。しかし、これらの高分子材料は上記光部品に要求される十分な耐熱性を有していない。そこで、 1 ~ 4 の高分子としての特徴を有することに加えて、耐熱性に優れた高分子材料であるポリイミドの光部品への適用が検討されている。特開平4-9807号公報においては、ポリイミドを用いた光導波路が基板上に製造できることが示されている。のかいで、光導波路の作製工程において、ポリイミドは基板への前駆体(ポリアミド酸)溶液の塗布とその後の加熱による硬化収縮や基板との熱膨張率差により生じる応力のために、その基板面と平行な方向の屈折率(nェω)に相違が生じる。

本明細書ではこれ以降、 n_{TE} と n_{TM} の差(n_{TE} - n_{TM})を複屈折と定義して用いることにする。

この複屈折の大きさはコア材のポリイミドとクラッド材のポリイミドの間で異なるため、 コアとクラッドの屈折率差が基板面と平行な方向の偏光と基板面に垂直な方向の偏光で異 なることになり、その結果、光導波路に入射する光の偏光方向により光損失が異なること 、すなわち片方の偏光での光損失が増大するという問題があった。

そこで、本発明者らは特願平6-54376号明細書において基板上に作製したポリイミド光導波路を基板からはく離した後、熱処理を行うことでポリイミド光導波路に生じた応力を解放し、これによって光学異方性が小さく、光学的に均一な光導波路が作製できることを示している。しかし、この場合も光導波路から応力を解放するためには基板を取り除かなければならないという問題があった。この材料としてのポリイミドは種々の有機ポリマーの中で耐熱性に優れているため、宇宙、航空分野から電子通信分野まで幅広く使われ始めている。特に最近では、単に耐熱性に優れているだけでなく、用途に応じて種々の性能を合せ持つことが期待されている。例えばプリント板や、LSI用の層間絶縁膜などでは、熱膨張係数、誘電率が小さいことが期待され、光通信関係では特に光導波路のクラッド材には屈折率差が小さいことが期待されている。また、安定な物性値を保つには、吸水率の小さなことが必要である。特にポリイミドを光通信用の光学材料として適用する場合、高い耐熱性に加えて、優れた光透過性や屈折率の精密な制御性が重要となる。

これまでに優れた耐熱性、光透過性、屈折率制御性を有するポリイミドが特開平4-8734号公報において明らかにされている。ここでは屈折率の相異なる2種類のフッ素化ポリイミドの共重合を行い、その共重合比を変えることで屈折率を制御している。一方、耐熱性に優れた芳香族ポリイミドは分子内に構造異方性の大きなベンゼン環やイミド環を多く含んでいるため、シリコン等の基板上で加熱製膜した場合に生じる熱応力によりポリイミド分子が面内に配向し、複屈折が大きく異なるという特徴を有している。この複屈折の大きさはポリイミドの分子構造に大きく依存する。通常、屈折率の大きく異なるポリイミドではその分子構造も異なるために、その複屈折の大きさも異なる。特開平4-8734号公報に示されたポリイミド共重合体はシリコン基板上でポリイミド共重合体薄膜を作製した場合に光通信波長となる波長1.3μmにおいて共重合比を変えることで n_{TE} の値を1.523から1.614の範囲で制御することが可能であるが、共重合比を変えることで同時にその複屈折も0.008から0.123まで大きく変化する。種々の光学部品の

中で特にシングルモード光導波路やシングルモード光ファイバを作製するためには屈折率を精密に制御した2種類の材料をコアとクラッドに用いることが必要となるが、上記ポリイミド共重合体を材料として用いる場合にはコア材料とクラッド材料の複屈折が異なるためにその偏波方向に対する光損失等の光導波特性に相違が生じるという問題があった。

[0003]

【発明が解決しようとする課題】

本発明の目的は従来の基板上に作製したポリイミド光導波路では有していなかった、コアとクラッドの屈折率差が基板面に平行な方向の光と基板面に垂直な方向の光の間で同程度になるようなポリイミド共重合体を用いて、偏波方向に対す

る光損失等の光導波特性の相違が小さいという特性を有する基板上のポリイミド光導波路 を提供することにある。

[0004]

【課題を解決するための手段】

本発明を概説すれば、本発明の第1の発明は基板上に積層したコア層とクラッド層からなる光導波路に関する発明であり、上記コア層及びクラッド層が共に2種類以上のポリイミドの共重合体であって、このポリイミド共重合体の基板面と平行な方向の屈折率(n_{TE})と基板面に垂直な方向の屈折率(n_{TM})の差(n_{TE} - n_{TM})を複屈折とし、上記コア層を構成するポリイミド共重合体の複屈折と上記クラッドを構成するポリイミド共重合体の複屈折と上記クラッドを構成するポリイミド共重合体の複屈折とか、共に波長1.3 μ mにおいて0.003以上であり、かつ上記コア層を構成するポリイミド共重合体の複屈折と上記クラッド層を構成するポリイミド共重合体の複屈折との相違が、共重合比によらず波長1.3 μ mにおいて0.002以下であるポリイミド共重合体から構成され、更にその共重合比を変化させることでコアとクラッドの間の屈折率差を制御することを特徴とする。

また、本発明の第<u>2</u>の発明は基板上に積層したコア層とクラッド層からなる光導波路に関する発明であって、第1の発明のポリイミド共重合体が下記一般式(化1):

[0005]

【化1】

[0006]

及び下記一般式(化2):

[0007]

【化2】

[0008]

で表される繰り返しからなるポリイミド共重合体において R_1 及び R_2 がそれぞれ下記式 (化 3):

20

10

30

SU

40

[0009]

【化3】

$$R_1 \not \sim O \longrightarrow O$$

[0010]

で表される繰り返しからなるポリイミドの共重合体であることを特徴とする。

また本発明の第3の発明は基板上に積層したコア層とクラッド層からなる光導波路に関する発明であって、第1の発明のポリイミド共重合体が下記一般式(化4):

[0011]

【化4】

[0012]

及び下記一般式(化5):

[0013]

【化5】

30

10

[0014]

で表される繰り返しからなるポリイミド共重合体において R $_3$ 及び R $_4$ がそれぞれ下記式 (化 6):

[0015]

【化6】

[0016]

で表される繰り返しからなるポリイミドの共重合体であることを特徴とする。

また本発明の第<u>4</u>の発明は基板上に積層したコア層とクラッド層からなる光導波路に関する発明であって、第1の発明のポリイミド共重合体が下記一般式(化7):

[0017]

【化7】

[0018]

及び下記一般式(化8):

[0019]

【化8】

[0020]

で表される繰り返しからなるポリイミドの共重合体であることを特徴とする。

また本発明の第<u>5</u>の発明は基板上に積層したコア層とクラッド層からなる光導波路に関する発明であって、第<u>1</u>の発明のポリイミド共重合体が下記一般式(化 9):

[0021]

【化9】

[0022]

及び下記一般式(化10):

[0023]

【化10】

[0024]

で表される繰り返しからなるポリイミドの共重合体であることを特徴とする。

[0025]

本発明者らは、種々の既存ポリイミド、及びポリイミドの共重合体についてその光透過性、屈折率、複屈折を評価した結果、複屈折の大きさが同等の2種類のポリイミド、及びそれらのポリイミドの共重合体や混合物が、優れた耐熱性や近赤外波長領域での優れた光透過性を有していることに加えて、共重合比や混合比に対する複屈折の大きさの依存性が小さくなることを見出した。

[0026]

本発明者らは、光導波路の材料として用いるポリイミドの分子構造とそのポリイミドを用いて基板上にポリイミド薄膜を作製した場合の屈折率(n_{TE} 、及び n_{TM})、及び複屈折について種々検討した。その結果、複屈折の大きさが同程度の 2 種類のポリイミド、又は複屈折の大きさが同程度の 2 種類のポリイミドの共重合体を光導波路のコア、及びクラッド材として用いることで、基板面に平行な方向の光と基板面に垂直な方向の光の間でコアとクラッドの屈折率差が同程度になるという特性を有する基板上のポリイミド光導波路を作製できることを明らかにした。更に、この光導波路のコアとクラッドのどちらか一方、又

10

20

30

40

は両方に用いるポリイミドを、複屈折の大きさが同程度の2種類のポリイミドの共重合体とし、ポリイミド共重合体の共重合比を変えることによりコアとクラッドの屈折率差を制御できることを明らかにした。

[0027]

本発明のポリイミド光導波路のコア及びクラッドに用いる2種類のポリイミドの例として は2,2,ビス(3,4,ジカルボキシフェニル)へキサフルオロプロパン二無水物(6 FDB)と2,2 - ビス(トリフルオロメチル) - 4,4 - ジアミノビフェニル(T FDB) から合成されるポリイミド(6FDA/TFDB) と6FDAと4,4 - オキ シジアニリン(4,4 -ODA)から合成されるポリイミド(6FDA/4,4 -O DA)を挙げることができる。また、本発明に用いる2種類のポリイミドとして6FDA / TFDB又は6FDA/4,4 - ODAのどちらか一方を第1種類目のポリイミドと し、 6 F D A / T F D B の繰り返し単位が第一成分で 6 F D A / 4 , 4 - O D A の繰り 返し単位が第二成分の共重合体を第2種類目のポリイミドとすることもできる。更に、本 発明に用いる2種類のポリイミドをそれぞれ前記共重合体の中から選ばれた共重合比の相 異なる共重合体とすることもできる。このとき、共重合体は共重合比、すなわち合成時に 用いる合成原料(6FDA、TFDB、4,4 - ODA)の中のTFDBと4,4 -ODAの仕込み比を変えることで複屈折が大きく変化することなく、屈折率(n_{τε}、及び n т м)を特定の範囲で制御できる。ここで示した 2 種類のポリイミドとそれらのポリイミ ド共重合体はその共重合比(共重合比が1:0、及び0:1を含む)によらず複屈折の変 動が波長1.3μmにおいて0.003以下であり、本明細書ではこのような一群のポリ イミド又はポリイミド共重合体を1種類の光導波路材料系と定義する。したがって、本発 明ではこの光導波路材料系の中からコアとクラッドの材料を選択することが特徴となるが 、本発明のポリイミド光導波路の作製に用いることができる光導波路材料系としては後記 表1に示す39種類の材料系を例に挙げることができる。表1中、「材料系1」は原料の 酸二無水物として6FDAを用い、ジアミンとしてTFDBを用いて合成されるポリイミ ド(6FDA/TFDB)を第1種類目のポリイミドとし、また酸二無水物として6FD Aを用い、ジアミンとして4,4 - ODAを用いて合成されるポリイミド(6FDA/ 4,4 ・ODA)を第2種類目のポリイミドとすることを示しており、先に説明した2 種類のポリイミドの例は「材料系1」の場合に当る。したがって、本発明のポリイミド光 導波路では表1に示した第1種類目のポリイミドと第2種類目のポリイミドの共重合体も もちろん使用することができる。更に、本発明に用いるポリイミドは共重合体の他に第 1 成分の単独重合体のポリアミド酸溶液と第2成分の単独重合体のポリアミド酸溶液の混 合物を経由したポリイミド混合物であってもよい。

[0028]

【表1】

10

20

表 1

	Aug. 4	表 1			
		のポリイミド		のポリイミド	
	酸二無水物	ジアミン	酸二無水物	ジアミン	
材料系 I			6FDA	4, 4' - ODA	
材料系 2			OFDA	4, 4'-DDSO2	
材料系 3	6 F D A	TFDB	ODPA	· · · ·	
材料系 4			BTDA	TFDB	
材料系 5			10FEDA		
材料系 6			.,	4, 4' -MDA	
材料系 7			6 F D A	4, 4' -ODA	
材料系 8				4, 4'-DDSO2	
材料系 9		151155	ODPA		
材料系10		4 FMPD	BTDA	TFDB	
材料系11			1 0 F E D A		
材料系12	10FEDA			4, 4' -MDA	
材料系13			6FDA	4, 4' - ODA	
材料系14				4, 4'-DDS02	
材料系15		8 F O D A	ODPA	#, # DD00E	
材料系16		010011	BTDA	TFDB	
材料系17			10FEDA		
材料系18			TOIDDA	4, 4' -MDA	
材料系19			6 F D A	3, 3' - DDSO2	
材料系20		2, 4′ – O D A	ODPA	ט ט טעע עע ט ט ט	
材料系21		L, 4 ODA	10FEDA	4, 4' - O D A	
材料系22			6 F D A	3, 3′-DDSO2	
材料系23	6 F D A	3 F D A M	ODPA	<u> 5, 5 - 7 7 5 0 2 </u>	
材料系24	UIDA	3 P D A IVI	10FEDA	4, 4' - O D A	
材料系25			6 F D A	2, 4′ – O D A	
材料系26		3, 4' -ODA	OFDA	2, 4 - ODA	
材料系27		3, 3' -DDS02	ODPA	1 1' 0 D 1	
		3, 3 - 7 7 3 0 2	ODPA	4, 4' - O D A	
材料系28 材料系29		4 4' - O D 4		4 DDAD	
	1 0 F E D A	4, 4′ – O D A	6 F D A	4-BDAF	
材料系30			10000	3 F E D A M	
材料系31		APHF33	10FEDA	4, 4′ – 6 F	
材料系32		3, 4' -ODA			
材料系33		3 F E D A M		4 – B D A F	
材料系34		4, 4'-DDS02			
材料系35	6 F D A		6 F D A	3 F D A M	
材料系36		4, 4′ - 6 F		3 F E D A M	
材料系37		2) 1 VI		3, 4′ – O D A	
材料系38				4, 4'-DDSO2	
材料系39	PMDA	TFDB	P 3 F D A	TFDB	

[0029]

表1の記号の説明

6 F D A: 2 , 2 - ビス(3 , 4 - ジカルボキシフェニル) ヘキサ

フルオロプロパン二無水物

1 0 F E D A : 1 , 4 - ビス (3 , 4 - ジカルボキシトリフルオロフェ

ノキシ)テトラフルオロベンゼン二無水物

ODPA: 4,4 - オキシジフタル酸無水物

PMDA: ピロメリット酸二無水物

10

20

30

40

40

50

BTDA: 3,3,4,4 - ベンゾフェノンテトラカルボン酸 二無水物 P 3 F D A : 1 - トリフルオロメチル - 2 , 3 , 5 , 6 - ベンゼンテ トラカルボン酸二無水物 TFDB: 2,2 - ビス(トリフルオロメチル) - 4,4 - ジ アミノビフェニル 4 F M P D : テトラフルオロ・m - フェニレンジアミン 8 F O D A : ビス(2,3,5,6-テトラフルオロ-4-アミノフ ェニル)エーテル 4,4 - ODA: 4,4 -オキシジアニリン 10 - O D A : 3,4-オキシジアニリン 2 . 4 - O D A : 2,4-オキシジアニリン 3 F D A M: 1 , 1 - ビス (4 - アミノフェニル) - 1 - フェニル -2 , 2 , 2 - トリフルオロエタン 〔 1 , 1 - ビス〔 4 - (4 - アミノフェノキシ)フェニル〕 - 1 3 F E D A M: - フェニル - 2 , 2 , 2 - トリフルオロエタン 1 3,3 - DDSO2:3,3 - ジアミノジフェニルスルホン 4,4 - DDSO2:4,4 - ジアミノジフェニルスルホン 4,4 - メチレンジアニリン 4,4 - MDA: 20 2 , 2 - ビス〔4 - (アミノフェノキシ)フェニル〕ヘキサフル 4 - B D A F : オロプロパン APHF33: 2 , 2 - ビス (3 - アミノ - 4 - ヒドロキシフェニル) ヘキサフ ルオロプロパン 4,4 -6F: 2 , 2 - ビス(4 - アミノフェニル)ヘキサフルオロプロパン

本発明者らはこれらのポリイミド、ポリイミド共重合体及び混合物の前駆体溶液を用いて シングルモード光導波路を作製することにより、その光導波路における光損失等の光導波 特性の偏波方向に対する相違を低減できることを見出した。本発明のポリイミド光導波路 の構造は、一般に製造されている基板上の光導波路と同様でよく、例えばスラブ型、リッ ジ型、埋め込み型等がある。光導波路のコア材とクラッド材に用いる共重合体の選択は、

光の波長、使用用途に適した屈折率の差になるようにすればよい。

[0031]

[0030]

埋め込み型シングルモード光導波路の製造方法について図1を参照しつつ説明する。すな わち図1は本発明による埋め込み型光導波路の作製方法の一例を示す工程図であって、符 号1は基板、2は下部クラッド層、3はコア層、4はコアパターンを形成するためのマス ク、5はレジスト層、6は上部クラッド層を意味する。シリコン等の基板1の上に下部ク ラッド用のポリイミド共重合体の前駆体溶液をスピンコート等の方法により塗布し、これ を加熱等により硬化して下部クラッド層2を得る。次にこの上に下部クラッド層として用 いたポリイミド共重合体より屈折率が高く、複屈折が同程度のポリイミド共重合体の前駆 体溶液を下部クラッド層2を形成したときと同様の方法により形成し、コア層3を得る。 次にこの上にコアパターンを形成するためのマスク層4を形成する〔図1(a)〕。マス クとしては A l 、 T i 等の金属、 S i O $_2$ 、 スピンオングラス (S O G) 、 S i 含有レジ スト、感光性ポリイミド等を用いることができる。マスク層 4 をつけた後レジスト塗布、 プリベーク、露光、現像、アフターベークを行い、パターニングされたレジスト層 5 を得 る〔図1(b)〕。次にレジスト層により保護されていないマスク層をエッチングにより 除去した後〔図1(c)〕、マスク層で保護されていないポリイミドをドライエッチング により除去する〔図1(d)〕。マスク層4にSi含有レジストや感光性ポリイミドを用 いた場合にはフォトレジストを使用する必要はない。次に残ったマスク層4をドライエッ チングやはく離液を用いることにより除去する〔図 1 (e)〕。更にこの上にコア層とし て用いたポリイミド共重合体より屈折率が低く、複屈折が同程度のポリイミド共重合体の前駆体溶液を下部クラッド層 2 を形成したときと同様の方法により形成し、上部クラッド層 6 を得る〔図 1 (f)〕。以上の工程を経ることにより、TEモードでのコアとクラッドの屈折率差とTMモードでのコアとクラッドの屈折率差が同程度で、偏波方向に対する光損失等の光導波特性の相違が小さなポリイミドシングルモード光導波路を作製できる。

[0032]

【発明の実施の形態】

引続いていくつかの実施態様を用いて本発明を更に詳しく説明する。なお種々の高分子の組合せにより、また光導波路構造により数限りない本発明の高分子フィルム光導波路が得られることは明らかであり、本発明はこれらの実施態様のみに限定されるものではない。ポリイミドの構造の確認は赤外吸収スペクトルにおけるカルボニル基の対称及び非対称伸縮振動による特性吸収から行った。測定はシリコン基板上のポリイミド膜を測定試料とし、基板に用いたシリコンウェハと同じ仕様のシリコンウェハをリファレンスとして行った。また、熱分解温度は窒素気流下10 /分の速度で昇温した時の10wt%重量減少時の温度で示した。屈折率(n_{TE} 、及び n_{TM})はプリズムカップリング法を用い、波長1.3μmで測定した値を示した。作製した光導波路の損失は以下のようにして測定した。まず、入射端より波長1.3μmのTE偏波光、又はTM偏波光を通し、出射光の強度を測定した。この入射光と出射光の強度の差を光導波路長で割り、単位長さ当りの光損失を求めた。

[0033]

光導波路用ポリイミドの合成

光導波路材料系(1)

〔(6FDA/TFDB):(6FDA/4,4 - ODA) = 0:1のポリイミドの合 成〕

[0034]

〔(6FDA/TFDB):(6FDA/4,4 - ODA) = 1:0のポリイミドの合 成〕

三角フラスコに6.40g(20.0mmo1)の2,2 - ビス(トリフルオロメチル) - 4,4 - ジアミノビフェニルと8.88g(20.0mmo1)の2,2 - ビス(3,4 - ジカルボキシフェニル)へキサフルオロプロパン二無水物、及びDMAc86.6gを加えた。これを窒素雰囲気下、室温で3日間かくはんし、粘度は約250ポアズのポリアミド酸のDMAc溶液を得た。この溶液をシリコン基板上にスピンコーティングし、窒素雰囲気下で70 で2時間、160 で1時間、250 で30分、更に350で1時間で加熱キュアした。この操作によりシリコン基板上に膜厚2~50μmのポリイミド膜が得られた。得られたポリイミド膜の赤外吸収スペクトルを測定したところ、1720、及び1790cm - 1 にポリイミドのイミド環のカルボニル基の対称及び非対称伸縮振動に基づく鋭い吸収ピークが観測され、このことからポリイミドが合成できていることを確認した。

[0035]

50

10

20

30

〔(6FDA/TFDB):(6FDA/4,4 - ODA) = 5:5のポリイミド共重合体の合成〕

窒素雰囲気下で三角フラスコに 0 .8 5 1 g (4 .2 5 m m o 1)の 4 , 4 . オキシジアニリンと 1 .3 6 1 g (4 .2 5 m m o 1)の 2 , 2 . ビス(トリフルオロメチル) - 4 , 4 . ジアミノビフェニル、及び D M A c 3 7 .5 g を加え、かくはんして 4 , 4 . オキシジアニリンと 2 , 2 . ビス(トリフルオロメチル) - 4 , 4 . ジアミノビフェニルを完全に溶解した。次にこの溶液に 3 . 7 8 g (8 . 5 0 m m o 1)の 2 , 2 . ビス(3 , 4 . ジカルボキシフェニル)へキサフルオロプロパン二無水物を加えた。これを窒素雰囲気下、室温で 3 日間かくはんし、粘度は約 3 3 0 ポアズのポリアミド酸共重合体の D M A c 溶液を得た。この溶液をシリコン基板上にスピンコーティングし、窒素雰囲気下で 7 0 で 2 時間、 1 6 0 で 1 時間、 2 5 0 で 3 0 分、更に 3 5 0 で 1 時間で加熱キュアした。この操作によりシリコン基板上に膜厚 2 ~ 5 0 μ m の均一なポリイミド共重合体膜が得られた。得られた共重合体膜の赤外吸収スペクトルを測定したところ、 1 7 2 0、及び 1 7 9 0 c m ⁻¹にポリイミドのイミド環のカルボニル基の対称及び非対称伸縮振動に基づく鋭い吸収ピークが観測され、このことからポリイミド共重合体が合成できていることを確認した。

[0036]

〔(6FDA/TFDB):(6FDA/4,4 - ODA) = 1:9~9:1のポリイミド共重合体の合成〕

上記 5 : 5 のポリイミド共重合体の合成における 4 , 4 ・ オキシジアニリンと 2 , 2 ・ ビス(トリフルオロメチル) ・ 4 , 4 ・ ジアミノビフェニルのモル比を種々に変えて、同様の操作を行い、種々のポリイミド共重合体を得た。これらの共重合体の生成は作製したフィルムの赤外吸収スペクトルにおけるイミド環の吸収バンドから確認した。

[0037]

〔作製したポリイミドの熱分解温度、屈折率、及び複屈折の評価〕

これらのポリイミド膜の熱分解温度を測定したところ、 1 0 w t % 重量減少温度はすべて 5 3 4 から 5 6 9 の範囲であった。また、波長 1 . 3 μ m での屈折率を測定したところ n_{TE} は 1 . 5 6 7 から 1 . 5 2 3、 n_{TM} は 1 . 5 6 2 から 1 . 5 1 5 の範囲であり、これらの n_{TE} と n_{TM} は共重合比を変えることで上記範囲内で任意にかつ \pm 0 . 0 0 1 以下の精度で精密に制御することができた。更に共重合比を変えたときの複屈折は 0 . 0 0 8 から 0 . 0 0 8 であり、その変動は \pm 0 . 0 0 1 以下の範囲に収まっていた。

[0038]

光導波路材料系(2)~(8)

光導波路材料系(1)の合成と同様にして、種々のジアミンと酸二無水物から他の光導波路材料系(2)~(8)を合成した。これらの材料がポリイミド、又はポリイミド共重合体であることは作製したフィルムの赤外吸収スペクトルにおけるイミド環の吸収バンドから確認した。これらの光導波路材料の熱分解温度、屈折率制御範囲、複屈折の変動範囲を表2に示した。

[0039]

【表2】

40

20

¥	IS		7第1成分	共重合体の	共重合体の第2成分	熱分解	屈折率制	御 範 囲	復屈折の本動物画
T 		酸二無水物	ジアミン	酸二無水物	ベミムダ	(C) (C)	nre	I) TM	发影闸运
光導波路材料系	9	6 F D A	TFDB	6 FDA	4, 4'- 0DA	534 - 569	1. 523 - 1. 566	1. 515 – 1. 558	0.008 - 0.008
光導波路材料系(2)	(3)	6 F D A	TFDB	6 FDA	4, 4 '-00502	695 - 11/5	1. 523 – 1. 569	1. 515 - 1. 563	0.006 - 0.008
光導波路材料系 (3)	ල	10FEDA	4 FMPD	6 F D A	4,4'-0DA	501 - 534	1. 527 - 1. 566 1. 519 - 1. 558	1.519 - 1.558	0.008 - 0.008
光導波路材料系 (4)	(4)	10FEDA	8 FODA	6 FDA	4, 4'- 0 D A	485 - 534	1. 523 - 1. 566 1. 515 - 1. 558	1.515-1.558	0.008 - 0.008
光導波路材料系	(2)	6 FDA	3 F D A M	6 FDA	2,4'-0DA	240 - 547	1. 544 - 1. 557	1. 539 - 1. 554	0.003 - 0.005
光導被路材料系 (6)	(9)	6 F D A	4 - B D A F	6 FDA	4, 4 '-00502	539 - 541	1. 540 – 1. 569	1. 534 - 1. 563	0.006 - 0.006
光導波路材料系	(1)	6 FDA	2,4'-0DA	6 F D A	3, 3'-00502	534 - 547	1. 557 – 1. 570	1. 554 - 1. 567	0.003-0.003
光導波路材料系(8)	(8)	6 F D A	4,4'-6F	6 FDA	3, 4'- 0 D A	542 - 566	1. 515 - 1. 566	1. 510 - 1. 562	0.005 - 0.005
比較材料系	Ν¥	6 F D A	2,4'-0DA	PMDA	4, 4, -0 D A	547 - 590	1. 557 - 1. 678 1. 554 - 1. 601	1. 554 - 1. 601	0.003-0.077

[0040]

表

光導波路の作製

(1)~(8)の光導波路材料系の中から1つの光導波路材料系を選択した。この光導波路材料系は2種類のポリイミドとそれらのポリイミドの共重合体からなる。この光導波路材料系の中から共重合比(1:0、及び0:1を含む)の異なる2種類のポリイミド又はポリイミド共重合体の前駆体であるポリアミド酸溶液をコア、及びクラッドに用いてシングルモード光導波路を作製した。

[0041]

10

20

30

【実施例】

以下、本発明を実施例により更に具体的に説明するが、本発明はこれら実施例に限定されない。

[0042]

実施例1

光導波路材料系(1)の中から1種類のポリイミドと1種類のポリイミド共重合体の前駆体であるポリアミド酸溶液を用いて埋め込み型光導波路を作製した。アルミニウム基板に(6FDA/TFDB):(6FDA/4,4 - ODA)の共重合比が3:7のポリイミド共重合体の前駆体であるポリアミド酸のDMAc15wt%溶液をスピンコート法により塗布した。これを70 で2時間、160 で1時間、250 で30分、350で1時間熱処理をして下部クラッド層を形成した。次にこの下部クラッド層上に6FDA/4,4 - ODAのポリイミドの前駆体であるポリアミド酸のDMAc15wt%溶液をスピンコート法により塗布した。

これを 7 0 で 2 時間、 1 6 0 で 1 時間、 2 5 0 で 3 0 分、 3 5 0 で 1 時間熱処理 をしてコア層を形成した。次にこのコア層上に膜厚 0 . 3 μ m のアルミニウム層を蒸着し た。次にこのアルミニウム層上にポジ型フォトレジストをスピンコート法により塗布した 後約95 でプリベークを行った。次にパターン形成用のフォトマスクを超高圧水銀ラン プを用いて紫外線を照射した後ポジ型レジスト用の現像液を用いて現像した。その後13 5 でポストベークを行った。これにより線幅 8 μ m を有する直線状のレジストパターン が得られた。次にアルミニウムのウエットエッチングを行い、レジストパターンをアルミ ニウム層に転写した。更にパターンニングされたアルミニウムをマスクとしてコア層のポ リイミドをドライエッチングにより加工した。次にポリイミドの上層にあるアルミニウム をエッチング液で除去した。更にこの上に下部クラッド層と同じポリイミド共重合体の前 駆体であるポリアミド酸のDMAc15wt%溶液をスピンコート法により塗布した。こ の塗膜を 7 0 で 2 時間、 1 6 0 で 1 時間、 2 5 0 で 3 0 分、 3 8 0 で 1 時間熱処 理して上部クラッド層を形成した。最後に光導波路の両端をダイシングソーで切り落とし て光の入出射端面を形成した。このようにしてアルミニウム基板上に埋め込み型シングル モード光導波路が得られた。この光導波路に基板と平行な方向の偏波を入射した場合(水 平偏光)の損失は0.5dB/cm、基板と垂直な方向の偏光を入射した場合(垂直偏光)の損失は0.5dB/cmであった。

[0043]

実施例2

光導波路材料系(1)の中から2種類のポリイミド共重合体の前駆体であるポリアミド酸溶液を用いて埋め込み型光導波路を作製した。光導波路の下部クラッド、及び上部クラッドの材料として(6FDA/TFDB):(6FDA/4,4 - ODA)の共重合比が8:2のポリイミド共重合体の前駆体であるポリアミド酸のDMAc15wt%溶液を用い、また光導波路のコアの材料として(6FDA/TFDB):(6FDA/4,4 - ODA)の共重合比が5:5のポリイミド共重合体の前駆体であるポリアミド酸のDMAc15wt%溶液を用いて、実施例1と同様の操作を行い、埋め込み型シングルモード光導波路を作製した。この光導波路の水平偏光の損失は0.4dB/cm、垂直偏光の損失は0.4dB/cmであった。

[0044]

実施例3

光導波路材料系(1)の中から1種類のポリイミドと1種類のポリイミド共重合体の前駆体であるポリアミド酸溶液を用いて埋め込み型光導波路を作製した。光導波路の下部クラッド、及び上部クラッドの材料として(6FDA/TFDB)のポリイミドの前駆体であるポリアミド酸のDMAc15wt%溶液を用い、また光導波路のコアの材料として(6FDA/TFDB):(6FDA/4,4 - ODA)の共重合比が7:3のポリイミド共重合体の前駆体であるポリアミド酸のDMAc15wt%溶液を用いて、実施例1と同様の操作を行い、埋め込み型シングルモード光導波路を作製した。この光導波路の水平偏

10

20

30

光の損失は 0 . 4 d B / c m、垂直偏光の損失は 0 . 4 d B / c m であった。

[0045]

実施例4~10

表 2 に示した各光導波路材料系から 2 種類のポリイミド又はポリイミド共重合体の前駆体であるポリアミド酸溶液を用いて、実施例 1 と同様の操作を行うことにより、埋め込み型シングルモード光導波路を作製した。この導波路の光損失を後記表 3 に示す。

[0046]

比較例1

表 2 の比較材料系に示す酸二無水物とジアミンを用い、複屈折の変動範囲が大きなポリイミド、及びポリイミド共重合体を合成した。これらの比較材料系の熱分解温度、屈折率制御範囲、複屈折の変動範囲を表 2 に示す。この結果より、この比較材料系の複屈折の変動範囲は実施例に用いた光導波路材料系と比較して極めて大きかった。

次にこの比較材料系の中から 1 種類のポリイミドと 1 種類のポリイミド共重合体の前駆体であるポリアミド酸溶液を用いて埋め込み型光導波路を作製した。光導波路の下部クラッド、及び上部クラッドの材料として(6FDA/2,4 ・ODA)のポリイミドの前駆体であるポリアミド酸のDMA c 1 5 w t %溶液を用い、また光導波路のコアの材料として(PMDA/4,4 ・ODA):(6FDA/2,4 ・ODA)の共重合比が 1:9のポリイミド共重合体の前駆体であるポリアミド酸のDMA c 1 5 w t %溶液を用いて、実施例 1 と同様の操作を行い、埋め込み型光導波路を作製した。この光導波路はコアとクラッドの複屈折が大きく異なるために水平偏光の損失は 0 ・5 d B / c m、垂直偏光の損失は 2 d B / c m以上であった。本比較材料系においてコアに用いるポリイミド共重合体としてPMDA/4,4 ・ODAの共重合比が 5 %より大きな共重合体を用いることにより垂直偏光の損失を低減することは可能であったが、これに伴って水平偏光の導波光がマルチモードとなった。

[0047]

【表3】

			书	cro Yelin					
実施例	作製に用いた光道を吹けれる	共重合体(重合体の第1成分	共重合体0	共重合体の第2成分	第1成分と第2成分 の共重合比	第2成分 共重合比	損	(dB/cm)
	儿寺 饭时们 什本	酸二無水物	ジアミン	酸二無水物	ジアミン	クラッド	J 7	水平偏光	垂直偏光
実施例 1	(1)	6 FDA	TFDB	6 F D A	4, 4'- 0 D A	3:7	0:1	0.5	0.5
実施例2	(1)	6 FDA	TFDB	6 F D A	4, 4'- 0 D A	8:2	5:5	0. 4	0.4
実施例3	(1)	6 F D A	TFDB	6 F D A	4, 4'- 0 D A	1:0	7:3	0. 4	0. 4
実施例4	(2)	6 FDA	TFDB	6 FDA	4, 4'-DDS02	3:7	0:1	0.5	0.8
実施例5	(3)	10FEDA	4 FMPD	6 F D A	4, 4'- 0 D A	1:0	6:4	0.5	0.6
実施例6	(4)	10FEDA	8 FODA	6 F D A	4, 4'- 0 D A	1:0	7:3	0.6	0. 7
実施例7	(2)	6 F D A	3 F D A M	6 F D A	2, 4'-0DA	1:0	0:1	0.5	0.7
実施例8	(9)	6 F D A	4 - B D A F	6 F D A	4, 4'-DDS02	8:2	3:7	0.6	0.6
実施例9	(1)	6 F D A	2, 4'- 0 D A	6 F D A	3, 3, -00802	9:1	0:1	0.6	0.6
実施例10	(8)	6 F D A	4,4'-6F	6 F D A	3,4'-0DA	2:8	0:1	0.6	0.7
比較例1	比較材料系	6 F D A	2,4'-0DA	PMDA	4, 4'- 0 D A	1:0	9:1	0.5	2以上

[0048]

【発明の効果】

以上に述べたように、本発明のポリイミド光導波路はそのコア、及びクラッド材料の複屈 折が同程度であるために、光損失等の光導波特性の偏波方向に対する相違が小さいことが 明らかとなった。これにより本発明のポリイミド光導波路は種々の光部品の構成要素とし て幅広く適用できるという効果がある。

【図面の簡単な説明】

【図1】本発明による埋め込み型高分子光導波路の作製方法を順に追って示した断面工程

10

20

30

図である。

【符号の説明】

1 : 基板、 2 : 下部クラッド層、 3 : コア層、 4 : コアパターンを形成するためのマスク、 5 : レジスト層、 6 : 上部クラッド層

(b) 5 4 3 2 1 (d) 4 3 2 1 (e) 3 2 2 1

(f)

【図1】

フロントページの続き

(72)発明者 丸野 透

東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内

(72)発明者 安藤 慎治

東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内

(72)発明者 阪田 知巳

東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内

(72)発明者 佐々木 重邦

東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内

(72)発明者 小林 潤也

東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内

合議体

審判長 瀧本 十良三

審判官 吉田 英一

審判官 向後 晋一

(56)参考文献 特開平7-92338(JP,A)

特開平4-288331(JP,A)

(58)調査した分野(Int.CI.⁷, DB名)

G02B6/12-14