新規フェノール系硬化剤と液晶性エポキシモノマーによる 樹脂硬化物の高次構造解析および熱拡散率測定

(東工大物質理工)[○]倉持凜太郎,丸井莉花,畠山歓,難波江裕太,早川晃鏡【要旨】

高熱伝導性エポキシ樹脂開発を志向した液晶性エポキシ樹脂硬化物においてフェノール硬化剤の分子構造が高次構造と熱伝導性に及ぼす影響を明らかにした。アルキル鎖の長い硬化剤を用いた場合、樹脂硬化物はスメクチック相状の構造を形成することが分かった。アルキル鎖の短い硬化剤を用いた樹脂硬化物はアルキル鎖の長い硬化剤を用いた場合よりわずかに高い熱拡散率を示した。これはフォノンの散乱が抑制されたことに起因すると考えられる。

【緒言】

近年、半導体の小型化・高集積化が加速する一方で、素子の発熱密度の増加が課題となっている。そのため、高効率な冷却システムの構築が必須であり、素子と冷却システムの接着に用いられる高熱伝導性複合樹脂材料の開発が求められている[1,2]。しかしながら、複合樹脂材料を構成するエポキシ樹脂は一般に熱伝導率が低く、効率的な放熱を妨げている。エポキシ樹脂の熱伝導性は樹脂内部に分子が規則的に配列した高次構造が形成されることにより向上が期待されるが、それらを構成するモノマーの分子構造と樹脂の高次構造ならびに熱伝導性との相関は未だ十分に明らかになっていない[3]。本研究では、エポキシ樹脂硬化物の高熱伝導化への試みの一環として、硬化剤に着目しフェノール性水酸基を有する硬化剤の合成とその硬化剤が樹脂硬化物の高次構造や熱伝導性に及ぼす影響を明らかにすることを目的とした。フェノール性硬化剤の合成ならびに液晶性エポキシモノマーと硬化反応を行い、樹脂硬化物の高次構造については X 線構造解析ならびに光学顕微鏡観察により明らかにした。また、樹脂硬化物の熱伝導性については温度波熱分析法を用いた熱拡散率測定によって評価を行った。

【実験】

1. モノマーの合成

樹脂硬化物の作製に用いたフェノール硬化剤, TPK4 および TPK8 は Figure 1 (a), エポキシモノマー (BiPhBE) は Figure 1 (b)に示すような反応を経て合成した.

Figure 1. Synthetic scheme of monomers ((a)TPK4 and TPK8 (b) BiPhBE).

2. 硬化物の作製

樹脂硬化物はエポキシモノマー (BiPhBE) と合成したフェノール硬化剤 (TPK4,8) を化学量論量で混合したものをメノウ乳鉢であらかじめ粉砕して用いた. 硬化反応はエポキシモノマーの融点以上となる 160 $^{\circ}$ Cから 220 $^{\circ}$ Cまで 10 $^{\circ}$ 6年の各温度において, 12 時間加熱することによって行った.

3. 解析・評価

得られた樹脂硬化物の性質および構造解析は、示差走査熱量(DSC)測定、広角 X 線回 折(WAXD)および偏光顕微鏡(POM)観察により行った.熱拡散率測定は温度波熱分析法により行った.

【結果と考察】

モノマーの合成

TPK4, 8 は中心部に柔軟なアルキル鎖を有し、両末端でカルボニル基を介してカテコール基と結合した化合物である。TPK4,8 の前駆体である化合物は 1,2-dimethoxy benzene と adipoyl chloride および sebacoyl chloride によるフリーデルクラフツアシル化によって合成した。次に-78 $^{\circ}$ Cにおいて BBr3 を用いた脱メチル化によって TPK4,8 の合成を試みたが、得られた化合物は不溶性の褐色固体であった。そこで、反応機構が異なる脱メチル化反応である benzenethiol を用いた反応を行うことで目的とする TPK4,8 を得た。精製は crude を酸析することで行った。TPK4 の全収率は 53%,TPK8 は 66%であった。得られた化合物の構造解析は 1 H, 13 C NMR スペクトル測定により行い、ピークを帰属できたことから目的の化合物が得られたことが明らかになった。

2. モノマーの熱的性質および相転移について

得られたモノマーTPK4 および TPK8, BiPhBE の熱的性質および相転移について知見を得るために、TG-DTA 測定、DSC 測定、POM 観察を行った.



Figure 2. TG-DTA curves ((a) TPK4, (c) TPK8), and DSC thermograms ((b) TPK4, (d) TPK8).

Figure 2(a)に示すように、TPK4 は 260 $\mathbb C$ で 5%重量減少温度が観測された。Figure 2(b)に示した DSC 曲線では、第一昇温過程で 261 $\mathbb C$ に吸熱ピークが見られ、270 $\mathbb C$ で発熱ピークが見られた。POM 観察では 264 $\mathbb C$ から固体が融解し、272 $\mathbb C$ で暗視野となり等方相であることが分かった。降温過程では、吸発熱ピークが観察されず、昇温過程において熱分解が生じたことが示唆された。Figure 2(c)に示すように、TPK8 は 325 $\mathbb C$ で 5%重量減少が観測された。Figure 2(d)に示した DSC 曲線では、第二昇温過程で 245 $\mathbb C$ に融解由来の吸熱ピークが見られた。降温過程では、212 $\mathbb C$ と 204 $\mathbb C$ に発熱ピークが見られた。212 $\mathbb C$ の発熱ピークは TPK8 の結晶化由来であると考えられ、204 $\mathbb C$ の発熱ピークは結晶-結晶の相転移に由来すると考えられる。POM 観察では 270 $\mathbb C$ において等方相であることが観察され、降温過程では 212 $\mathbb C$ から異方性の結晶構造の形成が始まることが分かった。

3. 硬化物の高次構造

得られた樹脂硬化物の高次構造について知見を得るために、WAXD 測定、POM 観察を行った。樹脂硬化物 TPK4/BiPhBE の WAXD プロファイル(Figure 3 (a))では、全てのサンプルで $2\theta = 20^\circ$ 付近にブロードなピークが見られた。硬化温度が低温側にシフトするにつれて $2\theta = 20^\circ$ 付近のピークがシャープになる傾向が見られ、硬化樹脂の高次構造形成が硬化温度に依存していることが示唆された。これは硬化温度が高温になると反応速度が速くなり、分子鎖の十分な配列前に硬化反応が進行することに起因していると考えられる。また、POM 画像において異方的な構造形成を示唆する光学像が観察されたことから TPK4/BiPhBE からなる樹脂硬化物はネマチック相状の構造を形成していると考えられる。

樹脂硬化物 TPK8/BiPhBE の WAXD プロファイル(Figure 3 (b))のおいても、全てのサンプルで $2\theta = 20^\circ$ 付近にブロードなピークが見られた。硬化温度が低温側にシフトするにつれて $2\theta = 20^\circ$ 付近のピークがシャープになる傾向が見られ、硬化樹脂の高次構造形成が硬化温度に依存していることが示唆された。硬化温度 160° Cから 200° Cで硬化したサンプルにおいては $2\theta = 1.8^\circ$ 付近にスメクチック相に由来する鋭いピークが観測された。このピークは d = 4.8 nm 程度の層間隔に相当し、TPK8 と BiPHBE の線状高分子を想定した場合の分子の繰り返し長(Chem 3D において MM2 計算を行った場合の分子鎖長を計算)と良い一致を示した。POM 画像において異方的な構造形成を示唆する光学像が観察されたことから硬化温度 160° Cから 200° Cの樹脂硬化物はスメクチック相状,硬化温度 210° C以上の樹脂硬化物はネマチック相状の構造を形成していることが明らかになった。

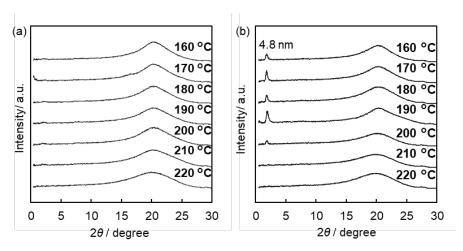


Figure 3. Wide angle X-ray diffraction of cured resins ((a) TPK4/BiPhBE and (b) TPK8/BiPhBE).

TPK4 および TPK8 を用いた場合の配列秩序性の違いはアルキル鎖長の違いに起因していると考えられる. アルキル鎖長が長い TPK8 を用いた場合に分子鎖全体の自由度が増し, 分子鎖内のメソゲン部の動きの制限が低減されることでメソゲン間の分子間相互作用が促進され, 層構造が形成されたと考えられる.

4. 硬化物の熱拡散率

各硬化温度条件によって得られた樹脂硬化物の熱拡散率測定を行った。210 ℃で硬化した TPK4/BiPhBE および 200 ℃で硬化した TPK8/BiPhBE の熱拡散率の値は,それぞれ 2.67 × 10^{-7} m² s⁻¹, 2.58 × 10^{-7} m² s⁻¹ であった.樹脂硬化物 TPK4/BiPhBE の熱拡散率の値は TPK8/BiPhBE の熱拡散率の値と比較して約 1.1 倍高い値を示した.これは TPK4 の方が分子鎖に含まれる柔軟なアルキル鎖の割合が少なく,フォノンの散乱が抑制されたことが原因であると考えられる.しかしながら,今回合成を行った硬化剤 TPK4,8 は高い融点を有しており,エポキシモノマーとの相溶が制限され,ネットワーク構造の形成が円滑になされなかったことが懸念される.そのため,今後の予定として硬化剤の融点降下を図り,均一に反応した樹脂硬化物の作製および高次構造解析,熱拡散率の調査を行っていく.

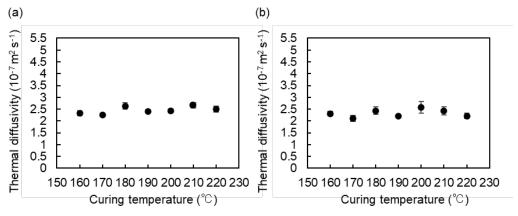


Figure 4. Thermal diffusivity of cured resins ((a) TPK4/BiPhBE and (b) TPK8/BiPhBE).

【結論】

絶縁性高熱伝導性エポキシ樹脂開発を志向した液晶性エポキシ樹脂硬化物において 4 官能性フェノール硬化剤の分子構造が高次構造と熱伝導性に及ぼす影響を明らかにすることを目的とし、アルキル鎖長に違いを持つ硬化剤を合成し、一次構造の違いに基づく樹脂硬化物への影響を調査した。アルキル鎖長が長い硬化剤 TPK8 を用いた場合に液晶の長軸方向の秩序性が向上し、スメクチック相状の構造を形成することが明らかになった。一方で熱拡散率についてはアルキル鎖長が短い硬化剤 TPK4 を用いた場合に約 1.1 倍高い値を示した.

【参考文献】

- [1] Y. Shimazaki, F. Hojo, Y. Takezawa, Appl. Phys. Lett. 2008, 92, 133309.
- [2] K. Ruan, X. Zhong, X. Shi, J. Dang, J. Gu, Mater. Today Phys. 2021, 20, 100456.
- [3] R. Maeda, K. Okuhara, A. Nakamura, T. Hayakawa, Y. Uehara, T. Motoya, H. Nobutoki, *Chem, Lett.* **2016**, *45*, 795.