ESIPT 能を有する多色蛍光性イミド化合物及び 赤色蛍光性ポリイミドの光物理過程

東工大・物質応化

○田淵 敦子・早川 晃鏡・桑田 繁樹・石毛 亮平・安藤 慎治

【要 旨】

励起状態プロトン移動を介した多色発光特性を有するイミド化合物(3TsAPI)とそれ に対応する酸無水物(3TsAPA)を新規に合成した.3TsAPAを無色の青色蛍光性ポリイミ ド(PI)の末端に導入すると,橙色蛍光を示した.これは主鎖から末端への高効率なエネル ギー移動を経た発光であり,本検討より,高い耐熱性を維持しつつ末端基に由来する励 起波長や周囲環境に依存した多色蛍光をPIに付与する有用な分子設計指針が得られた.

【緒 言】

蛍光性ポリイミド (PI) は耐熱性や機械的強度 に優れることから,太陽光波長変換膜への応用 が期待されており、その実用化に向けて吸収波 長と蛍光波長の差であるストークスシフト (SS) のさらなる拡大と量子収率の向上が望まれてい る[1]. そこで,我々はかさ高い置換基を有する 励起状態分子内水素移動(ESIPT)性イミド化合 物、3TsAPI (Fig. 1a) を新たに合成した. ここで ESIPT とは光励起後の遷移状態が、分子内水素 移動によるエナミン型 (N*) からイミン型 (T*) への互変異性により構造安定化することで、長 波長蛍光を示す現象である.3TsAPI は白色光下 で白色でありながら、紫外線照射により固体状 態で橙色蛍光(SS=9786 cm⁻¹, λ_{em}=580 nm)を 高い蛍光量子収率(Φ=0.22)で示し、さらに溶 媒種に依存して溶液状態で紫色から赤色までの 多色蛍光を示した. 量子化学計算に基づき, これ らの現象はN*型,T*型に加えてアミド基の水素 が解離したアニオン体(A*)に由来する蛍光が 競合することで生じることを解明した(Fig. 2) [2]. 本研究では,可視域で最長波長である赤色 蛍光を示す PI 薄膜の開発を目指して 3TsAPI と 同様の骨格をもつ反応性基 3TsAPA (Fig. 1b) を, 白色光下で無色透明の青色蛍光性 PI の末端に導 入した末端封止 PI (ODDC-3TsAPA, Fig. 1c) を 合成し,その発光特性を検討した.

Fig. 1 Chemical structures of (a) imide compound (3TsAPI), (b) anhydride (3TsAPA), and (c) end-capped PI (ODDC-TsAPA).

Fig. 2 Fluorescent solvato-chromism of 3TsAPI in various organic solvents.

【実 験】

3TsAPA の合成経路を Scheme 1 に示す. 末端封止 PI 薄膜の合成法を以下に記す. ODPA と DCHM を窒素雰囲気下, DMAc 溶液中にて 24 h 撹拌後, 3TsAPA を ODPA に対し異なる末端基分率 (*r* = 1.98, 3.96, 7.92, 14.8) で加えて 48 h 反応させ,前駆体 であるポリアミド酸溶液を得た.この溶液 を石英基板上にスピンコートし,窒素気流 下, 70 °C で 20 min 乾燥後, 220 °C で 1.5 h 熱処理することで末端封止 PI (ODDC-TsAPA) 薄膜を得た.

【結果と考察】

ODDC-TsAPA 薄膜の紫外可視 (UV-vis) 光吸 収スペクトル/発光スペクトルと白色光また は紫外光照射時の蛍光色の r 依存性および各 薄膜の発光色の色度図を Fig.3 に示す. いずれ の PI 薄膜も白色光下で無色透明,紫外光を吸 収し,紫色から橙色の蛍光を示した.発光スペ クトル上で,400 nm に現れるピークの強度が r の増加に伴って減少したことから,これは主鎖 の ODDC の蛍光に帰属した. 一方, 450 nm と 585 nm のピーク強度は r の増加に伴い増加し たことから、これらの蛍光は PI 末端に修飾し た 3TsAPA 由来の蛍光に帰属した. 溶液状態に おける 3TsAPI の A*型と T*型の蛍光波長は, それぞれ約 500 nm と 600 nm であることを踏 まえると、450 nm と 585 nm の蛍光はそれぞれ 3TsAPA の A*型と T*型に由来する蛍光と考え られる. さらに主鎖 ODDC 部の蛍光寿命を測 定し, 主鎖から末端へのフェルスター型共鳴エ ネルギー移動 (FRET) 効率 (E_{FRET}) を式(1)よ り評価した (Table 1). なお TODDC-TSAPA は ODDC-TsAPA 薄膜における ODDC の寿命, TOPPC は ODDC ホモポリマーの寿命である.

$$E_{\rm FRET} = \frac{\tau_{\rm ODDC} - \tau_{\rm ODDC-TSAPA}}{\tau_{\rm ODDC}} \qquad (1)$$

末端基分率rの増加に従い, E_{FRET} は増大した が,これは末端基濃度が増加したことでドナ ー (ODDC) とアクセプター (3TsAPA)の空間

Scheme 1 Synthetic scheme of 3-tosylaminophthalic anhydride, 3TsAPA (yield : 18%).

Fig. 3 UV-vis absorption and emission spectra and CIE coordinates of ODDC-TsA ($\lambda_{ex} = 350$ nm), which were prepared with variable *r* values, and photographs of these films under white light (UV off) and UV ($\lambda = 365$ nm) irradiation (UV on).

Table 1 Fluorescence life times (τ) and FRET efficiencies (E_{FRET}) of ODDC-TsA prepared with variable *r* values.

	ODDC	1.98	3.96	7.92	14.8
τ (ns)	10.10	4.91	3.04	2.49	1.83
Efret	-	0.51	0.70	0.75	0.82

的な距離が短縮し、エネルギー移動が促進され たためと考えられる. 末端基分率が最も大きい r=14.8の薄膜では、 E_{FRET} は82%に達し、この ため3TsAPAが鎖末端にのみ存在するにも関わ らず、主鎖である ODDC 由来の青色蛍光に比 べ大きな強度の橙色蛍光を得ることができた.

薄膜に照射する UV 波長を 330~400 nm の 範囲で 10 nm ずつ変化させて得た規格化蛍光 スペクトルを Fig. 4 に、色度図を Fig. 5 に示 す.スペクトルの形状および発光色が励起波長 に依存して変化した. λex = 330 nm では ODDC 由来の約400 nm の蛍光と3TsAPA の T*型由来 の約 580 nm の蛍光の二重蛍光が観察された. *λ*ex を 350 nm へ増加させると, ODDC 由来の蛍 光に対する T*型由来の蛍光の相対強度は増加 した. さらに λ_{ex} を400 nm まで増加すると, 蛍 光ピーク波長が約460 nm に変化した.ここで, ODDC の励起波長は 344 nm であり、3TsAPI の 最適励起波長は結晶状態で 370 nm, CHCl3 中で 350 nm であることを考慮して推測される ODDC-TsAPA の光物理過程を,各励起波長に 対応させて Fig.6 にまとめた. 短波長励起では ODDC の最適励起波長に近いため, a) ODDC 蛍 光, b) ODDC から 3TsAPA の A*型への FRET を介した A*型蛍光, c) N*型への FRET とそれ に次ぐ ESIPT を介した T*型蛍光の3つが競合 する. 中程度の励起波長は 3TsAPI の励起波長 に近いため, a) ODDC 蛍光に加えて, d) 末端 の 3TsAPA が直接励起され、T*型蛍光が強まっ

たと考えられる.最後に長 波長励起では,ODDCやT* 型は励起されず,e)A型が 直接励起され A*型蛍光を 示したと考えられる.上記 の結果から,ODDC-TsAPA 薄膜において,r や励起波 長を調節することで, ODDC,T*型,A*型の三者 の蛍光の混合比が変化し, 比較的広範囲の発光色を 得られることを実証した.

Fig. 4 Normalized fluorescence spectra of ODDC-TsAPA (r = 1.98, 3.96, 7.92, 14.8) observed with different excitation wavelengths ($\lambda_{ex} = 330, 340, 350, 360, 370, 380, 390, and 400 \text{ nm}$).

Fig. 5 CIE coordinates of the fluorescence colors of ODDC-TsAPA at different excitation wavelengths with r = 1.98, 14.8.

Fig. 6 Predicted photophysical processes of ODDC-TsAPA excited at shorter, medium, and longer wavelengths.

さらに, r = 14.8 の PI 薄膜をトリフルオロ酢酸(TFA)蒸気に曝すと,蛍光色が橙色から水色に変化した(Fig.3b). これは TFA と 3TsAPA間に水素結合が形成され ESIPT が抑制されるためと考えられる. さらにトリエチルアミン蒸気に曝すと蛍光色は緑に変化したが,これは A*型の生成に起因する. TGA 測定の結果,すべての薄膜において 5%重量減少温度は 430 ℃ 以上であり(Fig.8),高い熱安定性を有していることが判明した. 周囲の雰囲気に応答して発光色が幅広く変化する蛍光性 PI 膜の作製に成功したことから,環境センサー用途への展開が期待される.

【結 論】

溶液状態で多色蛍光を示すイミド化合物と類 似の化学構造を持つ新規の酸無水物 3TsAPA を合 成し,これを青色蛍光性ポリイミド(PI)である ODDC の両末端に導入した末端封止 PI (ODDC-TsAPA)を開発した.ODDC-TsAPA は無色透明の 薄膜であり,末端基分率(r)を調節することで, 紫外線照射下で紫色から橙色までの広範囲の蛍 光を示した.これは,ODDC 主鎖から 3TsAPA 末 端へ極めて効率的なエネルギー移動が生じる(r= 14.8 において E_{FRET} = 82%)ためである.また, ODDC-TsAPA は励起波長に依存して蛍光スペク トルが変化した.短波長の励起では ODDC が,中

Fig. 7 Normalized fluorescence spectra of 1) ODDC-TsAPA PI film ($\lambda_{ex} = 370 \text{ nm}$) prepared with r = 14.8, 2) exposed to TFA, 3) followed by exposure to TEA, and 4) finally washed with water, and the photographs of those films under UV ($\lambda = 365 \text{ nm}$) irradiation and its CIE coordinate.

Fig. 8 Thermogravimetric analyses (TGA) for ODDC-TsAPA films prepared with variable r values (r = 1.98, 3.96, 7.98, 14.8).

程度の励起波長では 3TsAPA の N*から分子内プロトン移動で生じる T*型が,長波長の 励起波長では 3TsAPA のアニオン (A*)型が効果的に励起・発光すると考えられる.こ のため,rや励起波長を調節することで ODDC,T*型,A*型の3者の蛍光ピークの強度 が変化し,広い波長範囲の発光色が発現する.さらにこの薄膜は有機酸や有機塩基に曝 すことで,発光色が橙色から青,緑色に変化した.3TsAPA がそれぞれ N*型,A*型を形 成したためと考えられる.以上より,主鎖からのエネルギー移動が極めて効率的なアク セプターである多色蛍光性分子 (3TsAPA)を PI 末端に導入することで,PI の剛直性に 由来した高い耐熱性を保持しつつ,励起波長や周囲環境の極性に依存した多色蛍光を示 す薄膜を開発することに成功した.このような特性を有する薄膜を得るためには,高効 率の FRET を引き起す主鎖および末端基の分子設計が重要となる.ODDC-TsAPA は今 後,有機酸・塩基の蒸気を検出する環境応答センサーに応用することが期待される.

【参考文献】

[1] J. Wakita, H. Sekino, K. Sakai, Y. Urano, S. Ando, *Macromolecules*, 43, 3594-3605 (2010).

[2] A. Tabuchi, T. Hayakawa, S. Kuwata, R. Ishige, S. Ando, Mater. Adv., 2, 5629-5638 (2021).