アルキルフルオレンをベースにした可溶性ポリアゾメチン(3)

東邦大理 ○栗原 圭史, 石井 淳一, 長谷川 匡俊

【要旨】鈴木・宮浦クロスカップリングを用いてベンジリデンアニリン(BA)構造を Poly(9,9-di-n- octylfluorene)に共重合させると芳香族イミン部位が消光サイトとして働き、 蛍光量子収率の急激な低下を招いた。そして消光作用はポリマー主鎖の屈曲性によって 変化することが分かった。

【緒言】π 共役ポリマーの1つであるポリアルキルフルオレン (PAFL) は有機発光ダイ オード (OLED) 用発光層材料として注目されている。PAFL 誘導体の多くは、金属触媒 を用いたクロスカップリング反応により重合するため、触媒の除去が難しく、高純度の ポリマーが得られにくい欠点がある。一方、π 共役ポリマーであるポリアゾメチン(PAzM) は、触媒を用いなくともジアルデヒドとジアミンの脱水重縮合によって容易に合成でき る。しかしながら、イミン基(CN 結合)を介して結合した多くのπ 共役ポリマーは、無蛍 光性になることが知られているため、イミン基による消光メカニズムを解明する必要が ある。そこで、本研究ではジアルデヒドとジアミンによる脱水重縮合による検討前に、 クロスカップリングで得られたベンジリデンアニリン (BA) 含有 PAFL の蛍光特性につ いて調査した。

図1 π共役ポリマーの構造

【実験】図2に示した2,7-ジブロモ-9,9-ジ-n-オクチルフルオレン(BrOFL)、そしてモノ アルデヒドとモノアミンから合成したベンジリデンアニリンのジブロモ誘導体 (44BrBA, 34BrBA, 33BrBA)を鈴木・宮浦クロスカップリングにより共重合した。得ら れたポリマーは加水分解を受けないことを確認した上で抽出-再沈殿により精製した。ポ リマーの分子量は、GPC 測定によって標準ポリスチレン換算分子量(数平均; *M*_nと重量平 均; *M*_w)によって算出した。共重合組成比は元素分析により確認した。

図2BA含有PAFLの合成スキームおよび使用したモノマー

【測定方法】<u>GPC 測定</u>; LC-Net II / ADC(日本分光製)を用いて、カラム Shodex KF-806L (昭和電工製)、UV-Vis 検出器(日本分光製 UV-2075)、溶離液 THF、流速 1 mL/s、UV 検出波長 254 nm で標準ポリスチレン換算より、数平均分子量(*M*_n)、重量平均分子量(*M*_w)、 分子量分散(*M*_w / *M*_n)を決定した。

<u>UV-Vis 吸収・蛍光スペクトル</u>; 溶液における UV-Vis 吸収・蛍光測定はクロロホルムに 溶解させたポリマー溶液 (UV-Vis 吸収測定: 1.0×10^5 base M、蛍光測定: 1.0×10^6 base M) を測定した。一方、薄膜における UV-Vis 吸収・蛍光測定はトルエン 1 wt%に溶解させた ポリマー溶液をスピンコーターで石英板に塗布し、熱風乾燥機によって 100℃/1 時間乾 燥して得た膜を測定した。溶液および薄膜における蛍光測定は、吸収極大波長 $\lambda_{max,UV}$ で 励起させて測定した。また、蛍光量子収率 (Φ_F) は、絶対 PL 量子収率測定装置 Quantaurus-QY (浜松ホトニクス製) にて求めた。

【結果・考察】
 ① BA 基 (44BrBA)
 導入による蛍光特性

表1に 44BrBA からなる共重合体の特性を示す。全系において重量平均分子量1万以上 を有し、クロロホルムやトルエンに対して高い溶解性を示した。蛍光特性についてホモ

ポリマーである Poly(9,9-di-noctylfluorene)は高い蛍光量子収率 を示すが、44BrBAを共重合すると 著しく蛍光量子収率が低下した。 薄膜ではポリマー鎖の凝集により 更に消光の程度が大きくなった。 44BrBA 導入による消光は、図3の ような励起三重項を経由する無輻 射失活や光異性化などの消光メカ ニズムが考えられ[1,2]、燐光(@77

図 3 BA 含有 PAFL の消光メカニズム

K)測定、光照射実験など行い検証する予定である。

Ar			Solution (CHCl ₃)			Thin film		
BrOFL (mol%)	44BrBA (mol%)	$M_{ m w} \ (M_{ m w}/M_{ m n})$	$\lambda_{\max,UV}$ (nm)	$\lambda_{\max,FL}$ (nm)	$\Phi_{\rm F}$	$\lambda_{\max,UV}$ (nm)	$\lambda_{\max,FL}$ (nm)	$\Phi_{ m F}$
100	0	2.8×10^4 (3.7)	381	415	0.87	380	435	0.51
75	25	2.8×10^4 (4.3)	378	415	0.20	380	435	0.50×10^{-2}
50	50	2.4×10^4 (3.1)	383	414	0.80×10^{-1}	385	436	$0.60 imes 10^{-2}$
25	75	1.2×10^4 (2.2)	384	415	0.10×10^{-1}	386	435	$0.60 imes 10^{-2}$
0	100	1.9×10^4 (3.1)	385	415	0.10×10 ⁻⁴	385	436	0.21×10^{-1}

表1 BrOFL:44BrBA 共重合体の分子量と UV-Vis 吸収・蛍光特性

② BA 基の構造異性体(34BrBA、33 BrBA) 導入による蛍光特性

44BrBAの構造異性体である 34BrBA と 33BrBA について共重合した PAFL について同様 の評価を行い表 2,3 にまとめた。これら構造異性体は 44BrBA よりも分子量が上昇しな かったが、製膜性に問題はなかった。ジブロモ体中 BA を 25 mol% (PAFL 中では 12.5 mol%) 共重合した際の吸収・蛍光スペクトルを図4 に示す。図5 に示すように屈曲性

(44BrBA < 34BrBA < 33BrBA) が増す BA ほど吸収スペクトルが短波長シフトした。ま た蛍光スペクトルは、振動構造がやや不明瞭になるものの大きな形状変化や発光波長の 移動は見られず、発光サイトに変化がないことを示していた。吸収波長の短波長シフト は、分子量低下による影響よりもポリマー鎖が屈曲し共役長が短くなったことが一つの 原因と考えられる[3]。一方、蛍光量子収率は主鎖の屈曲性が増すにつれて BA 基の消光 作用が弱まる傾向を示した。

図 4 三種類の BA 構造異性体 (PAFL 中導入率 12.5 mol%) の吸収・蛍光スペクトル (ク ロロホルム溶液). (--) BrOFL, (---) 44BrBA, (---) 33BrBA

44BrBA

34BrBA

図5 モノマーの屈曲性の序列

表 2 BrOFL:34BrBA 共重合体の分子量と UV-Vis 吸収・蛍光料	寺性
--	----

٨٣			Solution (CHCl ₃)			Thin film		
BrOFL (mol%)	34BrBA (mol%)	$M_{ m w} = (M_{ m w}/M_{ m n})$	$\lambda_{\max,UV}$ (nm)	$\lambda_{\max,FL}$ (nm)	$\Phi_{\rm F}$	$\lambda_{\max,UV}$ (nm)	$\lambda_{\max,FL}$ (nm)	$\Phi_{ m F}$
100	0	2.8×10^4 (3.7)	381	415	0.87	380	435	0.51
75	25	1.2×10^4 (2.6)	373	414	0.26	372	421	0.23×10^{-1}
50	50	6.8×10^{3} (2.0)	366	413	0.10	368	417	0.50×10^{-2}
25	75	7.4×10^{3} (2.5)	355	410	0.40×10^{-1}	344	419	0.10×10^{-2}
0	100	3.6×10^{3} (1.5)	352	411	0.20×10^{-1}	338	416	0.40×10^{-2}

日本ポリイミド・芳香族系高分子会議

「ポリイミド・芳香族系高分子 最近の進歩 2016」

Ar		М	S	Solution (C	CHCl ₃)		Thin film		
BrOFL (mol%)	33BrBA (mol%)	$M_{\rm w}$ $(M_{\rm w}/M_{\rm n})$	$\lambda_{\max,UV}$ (nm)	$\lambda_{\max,FL}$ (nm)	$\Phi_{\rm F}$	$\lambda_{\max,UV}$ (nm)	$\lambda_{\max,FL}$ (nm)	Φ_{F}	
100	0	2.8×10^4 (3.7)	381	415	0.87	380	435	0.51	
75	25	8.8×10^{3} (3.1)	368	414	0.48	372	421	0.23×10^{-1}	
50	50	4.4×10^{3} (1.9)	352	411	0.24	354	417	$0.80 imes 10^{-2}$	
25	75	4.9×10^{3} (2.0)	340	411	0.70×10^{-1}	344	419	0.10×10^{-3}	
0	100	2.8×10^{3} (1.5)	334	381	0.10	338	416	0.80×10^{-2}	

表3 BrOFL:33BrBA 共重合体の分子量と UV-Vis 吸収・蛍光特性

【まとめ】

鈴木・宮浦クロスカップリングによって重合された Poly(9,9-di-n- octylfluorene)は、高い 蛍光量子収率を有するが、イミン基を含む BA 導入によって著しい蛍光消光を受けるこ とが分かった。そして、その消光は BA の結合位置を変化させることで蛍光量子収率の 改善が見られる。この立体的な効果をさらに発展させ、消光メカニズムを解明しつつ、 脱水重縮合が適用できるジアルデヒドおよびジアミンの分子設計に反映させていく予 定である。

【謝辞】本研究の一部は文部科学省私立大学戦略的研究基盤形成支援事業(2012 年-2016 年)の助成により実施された。

【参考文献】

- [1] J. Yoshino, N. Kano, T. Kawashima, J. Org. Chem., 74, 7496-7503 (2009).
- [2] S. Barik, W. G. Skene, Eur. J. Org. Chem., 2563-2572 (2013).
- [3] S. H. Lee, T. Tsutsui, *Thin Solid Films*, **363**, 76-80 (2000).