Polymerization of Monomer Reactants (PMR)法を用いた TriA-X ポリイミドの硬化樹脂の性質と炭素繊維複合材料の作製

(日大院理工)○黒田祥平,青柳隆夫,澤口孝志 (カネカ)○古田武史,宮内雅彦 (宇宙機構航空部門)石田雄一 (宇宙機構航空部門/カネカ) 横田力男

[要旨]

これまでに我々は、PMDA と p-ODA から NMP 中で熱イミド化して得られる熱硬化 性イミドオリゴマーTriA-X が、優れた高温溶融流動性と耐熱性を示すことを見出して いる。TriA-X を炭素繊維複合材料(CFRP)のマトリクス樹脂として用いる検討を進めて いるが、CFRP の成型時に TriA-X 溶液の溶媒である NMP の完全除去が難しく、ボイド (空隙)の原因となることが課題である。そこで、我々は NASA で開発された熱硬化性ポ リイミド PMR-15 の作製方法(PMR 法)を元に高品質な複合材料の作製を目指した。PMR 法を用いた TriA-X の作製と一連の熱的・機械的特性の評価を行い、NMP 溶媒を用いた TriA-X と同等の物性を有する樹脂が作製できることを明らかにした。さらに、PMR 法 を用いて作製した CFRP はボイドがなく樹脂単独と同等の *T*g を示し、残溶剤のない CFRP を得ることが可能であった。

[1.緒言]

我々は、*N*-methylpyrrolidone(NMP, b.p.;203°C)溶媒中で溶液熱イミド化して得られた pyromellitic dianhydride(PMDA)と 2-phenyl-4,4'-diaminodiphenyl ether(p-ODA)からなる熱 硬化性イミドオリゴマーTriA-X (IO)が、高い溶剤溶解性と優れた高温溶融流動性 (<1000Pasec)を示すことを見出している。さらに、本 IO が熱硬化後に発現する 350°C 以 上の高い T_g と優れた破断伸び(>10%)などの特性に着目し、本 IO を用いたプリプレグお よび炭素繊維複合材料の作製に取り組んできた^{1,2)}。

この TriA-X を用いた複合材料の作製は、まず、本 IO を NMP 溶媒に溶解させて炭素 繊維に含浸・乾燥させたプリプレグを作製(IO 法)し、それらを積層して加熱・加圧成形 して行われてきた。この成形法の問題点として、特に厚い複合材料を成形する際に、積 層板から NMP の完全な除去が難しく、複合材料中にボイド(空隙)が残存し、また耐熱 性の低下を引き起こすことが挙げられる。

そこで、これまでに米国航空宇宙局(NASA)で開発された熱硬化性ポリイミド PMR-15 の成形法(PMR法)を適用し、高品質な複合材料の作製を目指している。この PMR法の 特徴は、①モノマー(エステル化した酸二無水物および末端剤、ジアミン)を低沸点溶 媒に溶解させた溶液を用いてプリプレグを作製し、②複合材料成形時にイミド化を経て 末端硬化までの一連の現場重合を行うことにより、炭素繊維複合材料を1段階で作製す ることである。

本報告では、PMR 法を用いて TriA-X および硬化樹脂を作製し一連の熱的・機械的物性を評価し、これまでに作製した NMP 溶媒を用いた TriA-X との比較、さらに炭素繊維 複合材料化及び熱的・機械的物性の評価を行った。

[2.実験]

2.1.PMR 法を適用した TriA-X 硬化樹脂の作製

<u>2.1.1. PMR 溶液の作製</u>

PMDA diester / p-ODA / 4-(phenylethynyl)phthalic acid mono-ethylester(PEPA MEE)粉末を、 7:8:2 or 4:5:2 のモル比で 50 ml サンプル瓶に添加後、固形分濃度が 80 wt.%となるように溶媒(MeOH, EtOH or 1,4-dioxane (b.p.104°C))を加え、N₂雰囲気下で攪拌を行った。

<u>2.1.2. IO 作製(Scheme 1, Mn_(calcd.) of IO = c.a. 2600 or 4100)</u>

上記で得られた、モノマーが完全に均一溶解した PMR 溶液をシャーレに移し、エア オーブンにて 250 ℃ / 60 min イミド化(Scheme 1)を行い、得られた発泡体を砕いて粉末 状の IO を得た。イミド化の完結は IR 測定により確認した。

<u>2.1.3. 硬化樹脂の作製</u>

UPILEX-S フィルム(宇部興産㈱製、厚さ:75µm)の上にさらに、6x6cmのサイズ を切り抜いた同フィルムを重ね、その上に上記で得られた IO 粉末を堆積し、ホットプ レス上で310℃(n=7:320℃)/5min/1MPa で溶融させた。その後、320℃/5minで数回 加圧して脱気を行い、さらに同フィルムを被せて370℃/60min/2MPa で加熱・加圧 硬化を行い、硬化樹脂フィルムを得た。

Scheme 1. Synthesis of the thermosetting imide oligomers TriA-X (PMDA diester/p-ODA/PEPA MEE) (n=4 or 7) by *in situ* PMR method

2.2.PMR 法を適用した TriA-X 炭素繊維複合材料(CFRP)の作製と物性評価

実験 2.1 にて作製した PMR 溶液と同組成の溶液 (n=7)を用いて作製した一方向プリプレグ(炭素繊 維: MR-50R)を、疑似等方積層(16ply [45/0/-45/90]2s) によって積層し、真空ホットプレスにて、上記の 2.1.2, 2.1.3 工程に相当するイミド化~末端硬化を 現場重合により行った。作製した CFRP の物性評 価は CFRP の端部、中心部をそれぞれ、光学顕微鏡 観察、DMA (動的粘弾性)試験、SBS(Short Beam Shear)試験を行った。

Figure 1. Carbon fiber/TriA-X composite material prepared by *in situ* PMR method (200×200mm, Vf=55%)

[3.結果と考察]

3.1.PMR 溶液の作製

まず、PMR-15の調製方法³⁾ に従って、PMDA dimethyl ester (PMDA DME)、p-ODA、 PEPA MEE を、MeOH 溶媒に添加し撹拌を試みたが、完全に溶解しなかった(Table 1)。 これは EtOH 溶媒を用いた場合も同様の結果となった。また別の低沸点溶媒である 1,4dioxane を用いて同様に検討を行ったが、撹拌中に沈殿の形成が見られ均一溶液を得る ことが出来なかった。

次に溶解性を向上させるためエステル部位のアルキル鎖が長い PMDA diethyl ester (PMDA DEE)を用い、溶媒に MeOH、EtOH、1,4-dioxane を用いて PMR 溶液の作製検 討を行った。MeOH、EtOH を溶媒に用いた場合では、撹拌中に沈殿の析出が見られた が、1,4-dioxane を用いた場合では完全に均一な溶液が得られることが分かった。ま た、同様に PMDA DEE と 1,4-ジオキサンを用いた系では、IO 法では作製が困難であ る n=7 量体の作製が可能であった。

	PMDA DME	PMDA DEE
MeOH	溶解せず	溶解途中で沈殿析出
EtOH	溶解せず	溶解途中で沈殿析出
1,4-dioxane	溶解途中で沈殿析出	完全均一溶解

Table 1. Preparation of PMR solutions using various esters and solvents

3.2. IO 法と PMR 法で作製したイミドオリゴマーの熱的・機械的物性の比較

IO法で作製した4量体IOは、DSC 測定の結果、 $T_g=219$ °C に観測され、 最低溶融粘度 ($|\eta|_{min}$)は 98Pa・sec (348°C)を示した。硬化樹脂の熱的・ 機械的物性は、DMA で $T_g=345$ °C、 引張試験では、破断伸びが 14%とな った。

上記、1.4-dioxane 溶媒の PMR 溶 液から作製した 4 量体 IO(PMDA DEE/p-ODA/PEPA MEE)のDSC 測定 を行った結果、イミドオリゴマーの Tg は 215℃ に観測された。また、レオメ ーター測定の結果、最低溶融粘度 (|η|*_{min})は 118Pa・sec (350°C)を示し た。本測定結果を元に実際にプレス 成形を行った結果、表面が非常に平 滑で、かつ膜厚が均一な硬化樹脂フ イルム(約100 μm)が得られ、PMR法 で作製したイミドオリゴマーは良好な 成形性を有していた。作製した硬化 樹脂の T_e(DMA)は 344℃で、引張試 験における破断伸びは平均 13%であ り、PMR 法で作製した TriA-X はこれ までの IO 法で作製した TriA-X と同 様の熱的・機械的性質を有しているこ

Figure 2. Melt viscosity measurements of imide oligomers

Figure 3. DMA curves of cured resin films

とが分かった。また、PMR 法で作製した 7 量体 IO の硬化樹脂の *T*gは 330 ℃、破断伸びは 19%、最低溶融粘度(|η|*_{min})は 504Pa·sec(365℃)と、4 量体同様に優れた値を示した(Table 2)。

Table 2. Shelf life of PMR solutions and properties of imide oligomers and cured resins

	Degree of Syr	Synthetic	Synthetic Shelf life of		Cured resins c)				
Monomer	polymerization	Method of	PMR solution	η [*] min of IOs (Pa:sec)	Tg	(°C)	Ε	σ_{b}	ε _b
	(n)	IOs ^a	(days)	()	DSC	DMA	(GPa)	(MPa)	(%)ave
PMDA	4	1	-	98	356	345	3.0	127	14.1
PMDA DEE	4	2	17 ^{b)}	118	352	344	2.9	128	13.4
PMDA DEE	7	2	14 ^{b)}	504	344	330	2.8	127	19.0

a)1(IO method): imidization with p-ODA/PEPA in NMP at 200°C/6h and reprecipitation in H₂O, 2(PMR method): imidization with p-ODA/PEPA MEE in 1,4-dioxane. b) in 1,4-dioxane at r.t. c) *E*: Modulus, σ_b : Tensile strength, ε_b : Elongation at break.

3.3. PMR 法を用いた炭素繊維複合材料(CFRP)の熱的・機械的性質

作製した CFRP(200mm×200mm) 厚さ:2mm, Vf(Fiber volume は. content)=55%であった。光学顕微鏡 で CFRP の断面観察を行ったとこ ろ、ボイドは見られず、PMR 法を適 用した効果によりボイドレスな CFRP の作製が可能であった(Figure 次に CFRP 切断機により端部と 中心部を小さく切り出した試験片を 用いて DMA 測定を行った。端部、 中心部ともに Tg=330℃ 以上を示し、 樹脂単独と同等の Tgを有していた。 NMP 溶媒を用いた作製法では端部 よりも中心部の方が溶媒が抜けにく く、中心部のTgが低下しやすくなる が、本実験の結果から PMR 法で作製 した CFRP は中心部でも溶媒が除去 できていることが示唆された。さら に、CFRP の機械強度を測定するた めに、SBS 試験(複合材料の見掛けの 層間せん断強度を測定する試験)を 実施した。試験片の破壊モードはせ ん断破壊であり、平均の層間せん断 強度は、PMR 法 TriA-X の CFRP と IO 法 TriA-X の CFRP で同等であっ た。

[4.結言]

以上より、今回 PMR 法を適用して 合成した TriA-X (n=4,7)は、従来の IO 法を適用した硬化樹脂と同様に優れ た成形性と熱的機械的特性を示し た。また、PMR 法を用いた TriA-X を マトリクスとした CFRP は、ボイド がなく優れた耐熱性と強度を有して いた。

Figure 4. Optical microscope observation of cross section of carbon fiber/PMR-type TriA-X(n=7) composite

Figure 5. DMA curves of carbon fiber/PMR-type TriA-X composite

Figure 6. SBS(Short Beam Shear)test

Table 3	Mechanical	nronerties of	TriA-X	CFRP
I able 5.	Wittenamean	properties or	IIIA-A	UT INI

樹脂	層間せん断強度 (MPa)				
PMR 法 TriA-X	65.9				
IO 法 TriA-X ^{a)}	64.0				

試験規格: ASTM D2344. a) MR-50R, 疑似等方積層 16ply, 真空ホットプ レス成形, TriA-X(n=4); PMDA/(p-ODA:BAFL)/PEPA=4/(4.5:0.5)/2

[5.参考文献]

1) 横田力男 他, 新訂最新ポリイミド 基礎と応用, エヌ・ティー・エス, 2010, 224-227 2) M. Miyauchi, Y. Ishida, T. Ogasawara, R. Yokota, *Polymer Journal*, 2013, 45, 594-600 3) T. T. Serafini, P. Delvigs, G. R. Lightsey, *Journal of Applied Polymer Science*, 1972, 16, 905-

915