ポリベンゾオキサゾール (PBO) の機能化 ~高フッ素化 PBO の光導波路材料への応用~

住友電気工業(株)エレクトロニクス・材料研究所 柿本正也

(はじめに)

フッ素化ポリイミドは、その優れた耐熱性と機械特性、近赤外領域の透明性から各種光デバイス、 光導波路用として最もよく研究されているポリマー材料である¹⁾。また最近の FTTH 加入者増加とトラ フィック増大に対応すべく、メトロ・アクセス系の CWDM (Coarse Wave Division Multiplexing) 化な ども検討されており、光導波路材料のさらなる広帯域化と低価格化が求められている。我々は、ポリ

イミドと比較して強い極性基を持たないポリベンゾオキサゾール(PBO)に着目し(Fig. 1)、パーフルオロジカルボン酸とフッ素化ビスアミノフェノールからシリル化法²⁾で新規な高フッ素化 PBO の合成を行った。熱機械物性や光学物性などを評価し、ドライエッチング加工により光導波路を作製した。さらに光部品作製のプロセス革新を目指して熱可塑性高フッ素化 PBO を合成し、ホットエンボス加工の可能性も検討した。

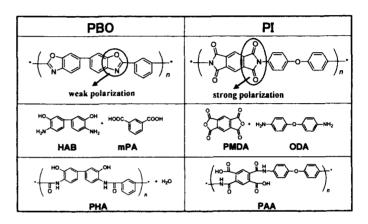


Fig. 1 Polybenzoxazole (PBO) and Polyimide (PI)

(1) 広帯域低光吸収損失な高フッ素化ポリベンゾオキサゾールの分子設計

光導波路や光部品デバイスの低コスト化のためには、ポリマー化が有望である。これまでに種々の構造のポリマーが本用途のために開発・検討されているが、NTT などによって研究開発されたフッ素化PIは光導波路用材料として優れた光学特性と耐熱性を有しており完成度も高い。例えば、Scheme 1(a)に示す市販のフッ素化PIは、現在光通信に使用されている波長領域(1.31 μ m、および 1.55 μ m)において、その光吸収損失は 0.4~0.5dB/cm 程度であり、屈折率、耐熱性共に大きな問題なく要求を満足する基本性能を有している。このため、現在、各種デバイスへの応用、材料/プロセスコストの低減が進められている。さらに広帯域で低光損失である材料として、フッ素の導入率を増やし全ての C-H 結合を C-F 結合に変換した Scheme 1(b) に示す全フッ素化 PI が報告されている 3)。全フッ素化 PI は 1.3 と 1.55 μ m における光吸収損失が約 0.1dB/cm と非常に優れているが、1.4 μ m 付近に見られる吸収は残ってしまう 4)。この吸収は、ポリイミド由来のカルボニル基(C=O)、および C=O に配位する水の O-H 結

$$\begin{array}{c|c} CF_3 & O & CF_3 \\ \hline \\ CF_3 & O & F_3C \\ \end{array}$$

(a) Fluorinated Polyimide (6FDA-TFMB)

(b) Perfluorinated Polyimide (10FEDA-4FMPD)

Scheme 1

合に起因するものではないかと言われている。このため、全フッ素化 PI でも CWDM のような広帯域を必要とする用途に最適であるとは言えない。

我々は、CWDMに対応できる広帯域低光損失と耐熱性を実現するために、ベンゾオキサゾール骨格に着目した。これはポリベンゾオキサゾール(PBO)が、C=Oのような強い極性基を持たない耐熱性高分子であるためである。このPBO骨格のビスアミノフェノール部分にフッ素を導入し、ジカルボン酸部分はパーフルオロ(全フッ素)のものを用いることにより、C-H 結合を極力減らすことにした(Fig. 2)。

さらに現状のフッ素化 PI のような石英ガラスと同様のドライエッチングプロセスでは加工コ

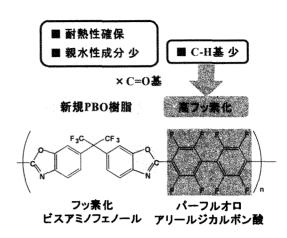


Fig. 2 Design of highly-fluorinated polybenzoxazole

ストが掛かり過ぎるため、高分子としての特性を活かしたプロセスとして金型成形することを念頭におき、高フッ素化 PBO を熱可塑化することも目指した。熱可塑性 PI としては、アリレーンエーテル構造を有する三井化学のオーラム®が市販されており溶融成形が可能である。一方、熱可塑性 PBO に関する報告例は少ないが、PI の場合とほぼ同様に柔軟なフェニレンエーテル構造を導入した PBO が熱可塑性であることが報告されている 50。このため、これと同様な構造でより多くの水素をフッ素で置換した PBO の合成を目標とした。

(2) 高フッ素化ポリベンゾオキサゾールの合成

パーフルオロジカルボン酸として、オクタフルオロビフェニル-4,4'-ジカルボン酸(FBP)、テトラフルオロイソフタル酸(FIPA)、ビス(4-カルボキシ-2,3,5,6-テトラフルオロフェニル)スルフォン(FBS)、1,4-ビス(2,3,5,6-テトラフルオロ-4-カルボキシ)テトラフルオロベンゼン(pFPE) 6 、1,3-ビス(2,3,5,6-テトラフルオロ-4-カルボキシ)テトラフルオロベンゼン(mFPE) 6 、およびパーフルオロアルキレンジカルボン酸((CF_{2})_m)などを用いた。

これらを塩化チオ ニルで酸クロライド 化して精製した後、ト リメチルシリル化し た 2,2-ビス (3-アミノ -4-ヒドロキシフェニ ル) ヘキサフルオロプ ロパン (AP) と Scheme 2 に示す重っ 化 PBO 前駆体ポリ(o-ヒドロキシアミド)

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} P_{1} \\ P_{2} \\ P_{3} \\ P_{4} \\ P_{5} \\ P_{5}$$

Scheme 2 Synthesis of highly-fluorinated PBOs by silvlation method

(PHA) を得た。これらの NMP 溶液を Si 基板上や銅箔上にキャストして、減圧もしくは窒素下で、 徐々に昇温して最終的に310℃×1時間などの加熱処理を行い各種高フッ素化PBOのフィルムを得た。

Table 1 に得られた前駆体 PHA の分子量(分散)、PBO の 1.55 μm における屈折率、Tg、および重量 減少開始温度 Td を示した。いずれもシリル化法により十分に高分子量のものが得られており、'H-, 13C-, ¹⁹F-NMR および IR 分析により、構造式通りの PHA が得られていることが確認できた。また、窒素下 の加熱処理により目的とする高フッ素化 PBO が得られた。

Table 1 Properties of highly-fluorinated poly(benzoxazole)s synthesized by silylation method				
Polymer	Mw ^a (Mw/Mn)	R.I. ^b (1.55µm)	Tgc	Td ^d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	190,000 (2.2)	1.538	~400	481
AP-FIFA (C) CF3 N CF3	23,000 (2.2)	1.545	~340	467
$AP-FBS \leftarrow C \begin{pmatrix} N & CF_3 & N \\ CF_3 & N \end{pmatrix} \begin{pmatrix} F & F \\ F & F \end{pmatrix} \begin{pmatrix} F & F$	30,000 (2.8)	1.527		444
$AP\text{-}pFPE + c c o o c f_3 o o o e f_4 e e o e e e e e e e e$	118,000 (1.8)	1.516	~270*	466
AP-mFPE CF3 NC F F F F F F F F	76,000 (1.7)	1.513	~230*	453
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	81,000 (1.5)	1.473	~180*	505

- a. Measured MW of poly(hydroxyamide)s by GPC (solvent: LiBr/NMP, polystyrene standard)
- b. Refractive index of spin courted PBO films on Si wafer measured by prism coupler at 1.55µm
- c. Tg measured by dynamic viscoelasticity measurements
- d. By TG-DTA at a heating rate of 10°C/min. under N₂

* apparently thermoplastics

(3) 高フッ素化ポリベンゾオキサゾールの耐熱性と光学特性

これら得られた高フッ素化 PBO の 1.55 μ mにおける屈折率 は、Table 1 に示したように 1.473~1.545 であった。高いフッ 素化率により非置換の PBO よりも低屈折率化しており、耐熱 性低誘電率材料としても期待される。熱分解開始温度はいずれ の PBO も 440℃以上であり、AP-FBP, AP-FIPA, AP-FBS は Tg も300℃以上で高い耐熱性を示した。また、これらの構成成分 を有する共重合体もほぼ任意の割合で得ることができ、精密な 屈折率制御が可能であった。100mm 程度の膜厚フィルムで得ら れた光吸収スペクトルと2種類のポリマーをコア・クラッドと する直線導波路での 1.55μm での導波損出から推定される光通 信領域波長における光吸収損失を Fig. 3 に示す。 市販のフッ素 化 PI が 1.4 μm 付近に C-H と C=O や O-H (水) に基づく吸収

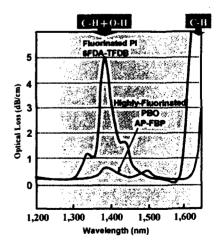


Fig. 3 Loss spectrum of highly-fluorinated PBO in near-infrared region compared with fluorinated PI

のため損出が大きいのに対して、フッ素化率が高く、強い極性基を持たないため含水量の低い高フッ素化 PBO は 1.4μm 付近の吸収が明らかに小さく、広い波長域に低光吸収損失であり狙い通り CWDM 用に適した材料であることがわかる。

屈折率を制御してコア・クラッド用材料を作れることがわかったので、シングルモード導波路用に屈折率を制御した材料を用いて、ドライエッチングプロセスによる光導波路の作製を行った。Fig. 4 に AP-FBP-co-AP-FIPA

Fig. 4 Fabricated PBO waveguide by dry etching process (1 × 8 Y-branch)

(2:1 共重合体、Mw = 320,000, Mw/Mn = 1.6) をコアに、AP-FBP(Mw = 190,000, Mw/Mn = 2.2)をクラッドに用いて酸化膜付き Si ウェハ上にドライエッチング加工で試作したシングルモード導波路(1×8 Y-分岐、サイズ: $4mm\times 20mm$)の写真を示す。

(4) 高フッ素化ポリベンゾオキサゾールの熱可塑化とホットエンボス加工

上記でドライエッチング加工した AP-FBP や AP-FIFA は剛直な主鎖骨格を持つのに対して、フレキシブルなフルオロフェニレンエーテル骨格をもつ AP-pFPE と AP-mFPE、さらにはパーフルオロアルキレン骨格を持つ AP- $(CF_2)_4$ は熱可塑性となることが予想された。**Fig. 5** にこれらのポリマーフィルムの動的粘弾性測定の結果を示す。

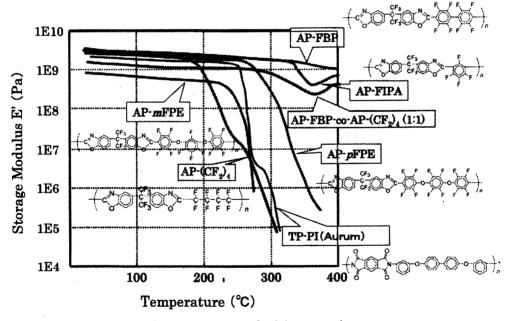


Fig. 5 DMA curves of polybenzoxazoles.

剛直な主鎖構造を持つ AP-FBP と AP-FIFA では、400℃まで加熱してもほとんど弾性率変化がない。これに対して、フェニレンエーテル構造を主鎖に持つ AP-pFPE および AP-mFPE は、それぞれ 270℃、230℃付近に Tg を持ち、Tg 以上の温度で 3 析以上弾性率が低下しており明らかな熱可塑性を示した。また、パーフルオロアルキレン骨格を持つ AP- $(CF_2)_4$ の Tg は 180℃程度まで低下することがわかった。ここで特に、AP-mFPE は動的粘弾性測定において、市販の熱可塑性 PI(三井化学製オーラム®)に近い弾性率変化を示した。

次に熱可塑化した高フッ素化 PBO をホットエンボス加工する検討に入った。光導波路や光部品をホ

ットエンボス加工で作製しようとする場合、特に 重要になるのは金型である。我々は、マイクロ・ ナノインプリントに使用可能で現在入手可能な各 種精密型の比較を行ない、シングルモード導波路 に対応する $10\mu m$ 以下の加工が可能か、表面粗さ・ 形状精度はどの程度か、耐熱性はあるかなどを調 べた結果、Ni 電鋳金型が使用できそうであること がわかった。そこで、SR 光を利用した LIGA プロ セスで Fig. 6 に写真を示す幅 $11\mu m$ 、高さ $13\mu m$ の 凸状構造体を Ni 基板上に作製した凸型 Ni 電鋳金 型を製作した。同種の型作製の詳細は依田らによ って報告されている 7 。

この金型を用いて 4 インチシリコンウェハ上にスピンコートで製膜した約 20μm 厚の熱可塑性高分子膜に対して、ナノインプリンティング装置 (明昌機工 (株) 製、減圧下で300℃までの加熱、100kNまでの加圧が可能) によりホットエンボス加工を行った。合成した中で加工性に優れた高フッ素化PBO である AP-mFPE でのホットエンボスの結果

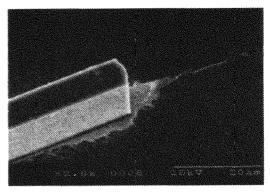
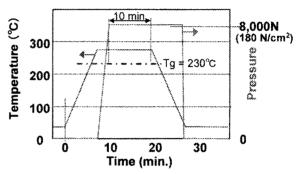



Fig. 6 SEM image of Ni electroforming mold made by LIGA process

Fig. 7 Typical temperature and pressure profile for hot embossing of PBO(AP-*m*FPE).

を示す。230℃の Tg に対して、50℃上の280℃で10 分間のプレスを真空下で行った。プレスの際の温度・圧力プロファイルの例を Fig. 7 に示す。きれいなパターンを得るために重要なのは、離型温度と離型速度である。いろいろな条件を検討した結果、最終的に Fig. 8 の 3 次元プロファイルに示すような金型のリッジがきれいに転写した深さ $13\mu m$ 、幅 $12\mu m$ の溝形状を形成することに成功した。このホットエンボス加工だけで光導波路を形成できる訳ではないが、Fig. 9 に示すような後工程を行うことで、先に述べたドライエッチングプロセスよりかなり安価に光導波路を形成することは可能である。

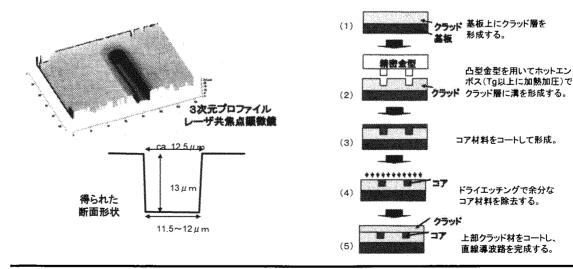


Fig. 8 3D-profile of the embossed surface of AP-mFPE by a ridge mold.

Fig. 9 Schematic process flow for waveguide structuring using hot embossing

これらの結果は、この熱可塑化した高フッ素化 PBO の加工に、ホットエンボスによる安価な光部品製造プロセスが適応できる可能性を示すものである。

(5) まとめ

これまで述べてきた報告内容をまとめる。

- 1. シリル化法により種々の新規高フッ素化ポリベンゾオキサゾール (高フッ素化 PBO) の高分子量 合成に成功。(Mw=数万~数十万)
- 2. 高フッ素化 PBO はフッ素化 PI と同様に高耐熱性で、かつ CWDM 化に対応できる広帯域低光吸収 損失の特性を有していることを確認。
- 3. ドライエッチングプロセスでシングルモード導波路を作製、導波路レベルで特性を確認(光吸収損失、耐熱性、長期信頼性)。
- 4. 熱可塑性高フッ素化 PBO も合成して、マイクロ・ナノインプリンティング技術を利用したホット エンボス加工によりリッジ形成が可能であることを確認。→ 安価な光部品製造プロセスの可能性。
- 5. 高フッ素化 PBO は、高耐熱性で低屈折率、低誘電率材料であることを見出した (Dielectric Constant (実測値): AP-FBP = 2.9@1GHz、AP-pFPE = 2.7@1GHz など)。

ポリベンゾオキサゾール機能化の例として、近赤外の広帯域で低光吸収損失な高フッ素化ポリベン ゾオキサゾールを紹介した。フッ素化ポリイミドと同様な光導波路デバイスや周辺光部品への適用が 期待されると共に、耐熱低誘電率材料としての応用も期待される。

油 文

- 1) S. Ando, J. Photopolym. Sci. Technol., 17, 219-232 (2004).
- 2) Y. Maruyama et al., Macromolecules, 21, 2305-2309 (1988).
- 3) S. Ando et al., Macromolecules, 25, 5858-5890 (1992).
- 4) 景井絵里子 他, 2002 年電子情報通信学会総合大会講演論文集, C-3-152 (2002).
- 5) G. Maglio et al., J. Polym. Sci. Part A: Polym. Chem., 38, 1172-1178 (2000).
- 6) R. J. De Pasquale and C. Tamborski, J. Org. Chem., 33, 830-833 (1968).
- 7) 依田 潤 他, 高分子, 53(5), 322-325 (2004).