ポリイミドを中心とした有機・高分子材料の高周波誘電特性

東京工業大学 物質理工学院・安藤 慎治

有機・高分子物質(分子性物質)の比誘電率 (D_k) は巨視的な物性であり、双極子分極、原子分極、電子分極のすべての寄与を含む微視的な分極率 α_t と次の Clausius-Mossotti 式で結ばれている. なお本節では、高分子膜の誘電物性の計測上の制約 (TE モード) から、面内方向の誘電物性と光学物性を考える.

$$P_{\rm t} = \frac{D_{\rm k} - 1}{D_{\rm k} + 2} = \frac{N\alpha_{\rm t}}{3\varepsilon_0} \tag{1}$$

ここで、 P_t はモル誘電分極、N は単位体積中の分子数、 ε_0 は真空の誘電率である.

一方、光吸収の影響が無視できる波長帯での有機・高分子物質の巨視的な面内屈折率 n_{TE} は、微視的な面内の電子分極率 α_e 、平均屈折率 n_{av} と次式で結ばれている.

$$P_{\rm e(TE)} = \frac{n_{\rm TE}^2 - 1}{n_{\rm av}^2 + 2} = \frac{N\alpha_{\rm e}}{3\varepsilon_0}$$
 (2)

ここで、 $P_{\text{e(TE)}}$ はモル電子分極であり、Debye の関係式を用いると、 P_{t} と $P_{\text{e(TE)}}$ の差 (= モル双極子分極、 $P_{\text{d(TE)}}$) は、面内方向の永久双極子モーメント μ_{TE} と次式で結ばれる.

$$P_{\rm d(TE)} = P_{\rm t} - P_{\rm e(TE)} = \left(\frac{D_{\rm k} - 1}{D_{\rm k} + 2} - \frac{n_{\rm TE}^2 - 1}{n_{\rm av}^2 + 2}\right) \approx \frac{N_{\rm A}\mu_{\rm TE}^2}{9\varepsilon_0 k_{\rm B}T} \quad (3)$$

ここで、 N_A は Avogadro 数、 k_B は Bolzmann 定数、Tは絶対温度である。電子分極のみの場合($P_T = P_{e(TE)}$)は $D_k = n_{TE}^2$ が成り立つ。(3)より環境温度も考慮すべきであり、また水(H_2O)が極めて大きな D_k を有することから、測定環境の湿度が高分子の誘電特性に与える影響は大きい。

図 1 に複素誘電率の実部 (D_k) と虚部 (誘電損失 D_i) の周波数依存性 (誘電分散) の模式図を示す。図の左側は双極子分極を含む電気的領域、右側は原子分極 (赤外振動) と電子分極からなる光学的領域と呼ばれるが、非イオン性高分子では、原子分極の寄与はほぼ無視できる.

Fig. 1 Frequency dependence of complex permittivity.

図2に P_t , P_d , P_e の関係を模式的に示す. P_t は D_k から, P_e は屈折率から評価でき, P_d はその差として算出される.

Fig. 2 Relations between three polarizations (P_t, P_d, P_e) .

図3に10 GHz における15種のポリイミド (PI) 薄膜における D_k , D_f の実測値と極性基 (=イミド基+エステル基)分率 (R_p) および P_t , P_e , P_d との関係を示す。まず, D_k は R_p と高い相関にあり,また D_k とほぼ比例関係にある P_t も, $P_{e(TE)}$ と高い相関にある。これはすでに指摘されているように,PI の D_k がイミド基分率や n_{TE} に概ね比例することと一致する。一方,PI の D_f は R_p との相関が見えないものの分類(色分け)が可能であり,かつ極めて興味深いことに D_f は $P_{d(TE)}$ と比較的高い相関にある。つまり D_f は μ_{TE} の局所運動により生ずるエネルギー損失であるため,誘電分極から電子分極の項を差し引いた $P_{d(TE)}$ によって良く説明され,これは(3)式とも符合する。

最後に、PIにおける誘電物性と光学物性にはともに強い異方性があり、実験値・解析値ともに等方的パラメーターでは有意な相関が得られにくいことを付記する.

Fig. 3 Relations between the experimental values (D_k , D_f , P_t) versus the polar group content (R_p) and the electronic and dipolar polarizations ($P_{e(TE)}$ and $P_{d(TE)}$).

【文献】1) ACS Appl. Polym. Mater., **2021**, *3*, 362-371. 2) 安藤慎治 ナノファイバー学会誌, **2023**, *13* (印刷中). 謝辞:各種PI群の誘電・光学物性の測定・解析における 澤田梨々花さん (修士学生) の貢献に感謝します.