Quantitative Analysis of the Dielectric Properties of Various Polyimides at 10 GHz and Their Humidity Dependence Based on the Polarization Characterization

Ririka Sawada and Shinji Ando

(¹Dept. Chem. Sci. Eng., Tokyo Institute of Technology, Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo 152-8552, Japan) Tel & Fax: +81-3-5734-2889, E-mail: <u>sawada.r.ae@m.titech.ac.jp</u>

INTRODUCTION:

Polyimides (PIs) are expected to be used as high-frequency low-dielectric insulators, such as flexible substrates for wireless transmission and interlayers for antenna-in-packages [1]. However, conventional fully aromatic PIs generally show high dielectric constants ($D_k \approx$ 3.2), high dissipation factors ($D_f \approx 10^{-2}$), high refractive indices (n > 1.65), and high moisture absorption ($\approx 3 \text{ wt\%}$) [2] due to the rigid molecular structures and polar imide groups. Moreover, the D_k and D_f of PIs are significantly affected by relative humidity (RH) in the operating (measurement) environment because water molecules show quite large D_k (\approx 60) and $D_{\rm f}$ (≈ 0.5) at around 10–20 GHz [3]. Although the RH dependence of D_k and D_f of PIs has been reported [4,5], its detailed mechanism has not been clarified. In this study, the D_k and D_f measured for 15 kinds of PIs (Fig. 1) at 10 GHz were quantitatively analyzed based on their chemical structures, refractive indices (n), and total (P_t) , dipolar (P_d) , and electronic (P_e) polarizations per unit volume, in which P_t = $P_d + P_e$, and P_t and P_e are defined as $P_t = (D_k - 1)/(D_k + 2)$ and $P_{\rm e} = (n^2 - 1)/(n^2 + 2)$, respectively. Moreover, the RH dependence of D_k and D_f was investigated by considering the interactions between PI chains and water molecules, i.e. hydrophobicity and hygroscopicity.

EXPERIMENTAL:

PI films 50 x 50 mm in size and ca. 20 µm thick were prepared using the conventional two-step method followed by spin-coating and thermal imidization. D_k and D_f of the PI films were measured at 10 GHz in the transverse electric (TE₀₁₁) mode using a cavity resonator (AET, Japan) connected to a vector network analyzer (Anritsu MS46122B, Japan). The RH dependence of D_k and D_f was measured in a home-built humidity-controlled chamber with an automated insertion device. RH level in the chamber (25–60%RH) was regulated by N₂ flow. The in-plane and out-of-plane refractive indices (n_{TE} and n_{TM}) of PI films were measured using a prism coupler (Metricon PC-2010, USA) at a wavelength of 1310 nm.

RESULTS AND DISCUSSION:

Based on the Clausius-Mossotti and Lorentz-Lorenz equations, P_d is related to the dipolar orientations in the polymer chains, while P_e is nearly proportional to the square of the refractive index (n^2) [6]. To examine the dielectric properties of polymers, each component of $P_t (\propto D_k)$, $P_e (\propto n^2)$, and P_d (\propto dipole moment², μ^2) should be separately evaluated because Maxwell's equation ($D_k = n^2$) is applicable only for the optical domain ($P_d = 0$).

Fig. 2 Relationships between (a) P_t and P_e . and (b) D_f and P_d .

As shown in **Fig. 2(a)**, P_t shows a positive linear correlation with P_e , which indicates that P_t is mainly dominated by P_e . Moreover, the contribution of P_d , which corresponds to the difference between the linearly fitted line and that of $P_t = P_e$, is nearly constant and independent of P_e . This is supported by the fact that the contribution of P_d in P_t is only ~20%. This figure indicates that a reduction in *n* and P_e effectively decrease D_k , which is archivable by a decrease in packing coefficient (K_p) and/or polarizability per unit volume (a/V) [7]. Thereby, the PIs having fluorinated or bulky alicyclic groups show smaller *n* and D_k values compared to the conventional PIs having rigid molecular structures with forming dense chain packing.

Fig. 2(b) demonstrates an obvious correlation between P_d and D_f , in which D_f is caused by dipolar relaxation. This fact indicates that D_f is closely related to P_d , and the PIs having intrinsically smaller μ or restricted dipolar relaxation show smaller D_f . Accordingly, the fluorinated PIs containing $-CF_3$ groups with smaller μ or the fully aromatic rigid PIs forming dense molecular packing, which suppresses dipolar relaxation, exhibit smaller P_d and D_f . In contrast, the PIs containing alicyclic structures with large free volumes and/or polar ester groups with a large μ show larger P_d and D_f . Note that the relationship between D_f and $P_{d(TE)}$ derived from n_{TE} exhibits a higher correlation than that between D_f and $P_{d(av)}$ derived from n_{av} . This indicates that the P_d and D_f of the PIs are anisotropic properties, and they are closely related to the in-plane components of μ and its relaxation motion.

As shown in **Fig. 3**, the D_k and D_f at 10 GHz show linear increases with RH for all the PIs, which implies that both the D_k and D_f of PIs are significantly influenced by moisture in the operating (measurement) environment. The slopes of the linear fitted lines in **Fig. 3** differ depending on each PI. Notably, the D_f values extrapolated to the perfectly dried state converge to around 0.001, suggesting that the intrinsic D_f of each PI originated from their dipolar motion at 0 %RH is quite limited.

Fig. 4 shows that the slopes in Fig. 3 (h_{Dk} and h_{Df}) are in a higher linear relation, indicating the sensitivities to the humidity of D_k and D_f for each PI are closely correlated. These PIs can be classified into three groups based on their h_{Dk} and h_{Df} in terms of chemical structure and moisture sorption. The PIs with large fluorine contents and those derived from *s*BPDA dianhydride, which forms strong aggregation (group I), exhibit extremely low sensitivity to RH, and the partially fluorinated and alicyclic PIs (group II) show moderate sensitivities. In contrast, hygroscopic Kapton-H and nonfluorinated bio-based poly(ester imide)s with large fluore free volumes and flexibility (group III) show h

Fig. 3 RH dependence of (a) D_k and (b) D_f measured at 10 GHz.

Fig. 4 Relationship between h_{Dk} and h_{Df} derived from Fig. 3.

imide)s with large free volumes and flexibility (group III) show higher sensitivity to RH.

In summary, the D_k and D_f of 15 kinds of PIs at 10 GHz are explainable by the dipolar characterization, and they linearly increase with RH. Highly fluorinated PIs exhibit the lowest D_k and D_f with the lowest h_{Dk} and h_{Df} , originating from their small α/V values and high hydrophobicity.

REFERENCES:

[1] Y. Liu, X.-Y. Zhao, Y.-G. Sun, W.-Z. Li, X.-S. Zhang, J. Luan, Resour. Chem. Mater. 2 (2023) 49–62.

- [2] M. Hasegawa, K. Horie, Prog. Polym. Sci. 26 (2001) 259-335.
- [3] W.J. Ellison, J. Phys. Chem. Ref. Data 36 (2007) 1-18.
- [4] F.W. Mercer, T.D. Goodman, High Perform. Polym. 3 (1991) 297-310.
- [5] R. Bei, K. Chen, Y. He, C. Li, Z. Chi, S. Liu, J. Xu, Y. Zhang, J. Mater. Chem. C (2023). doi:10.1039/D3TC01337E
- [6] J.O. Simpson, A.K. St.Clair, *Thin Solid Films* 308–309 (1997) 480–485.
- [7] Y. Terui, S. Ando, J. Polym. Sci. Part B Polym. Phys. 42 (2004) 2354–2366.