高屈折率を示す含硫黄ポリイミドの光透過性と屈折率の波長分散 東工大院理工 〇中村 康広,劉 金剛,芝崎 祐司,上田 充,安藤 慎治

[緒言] 光学レンズ材料には使用波長域での高透明性,高屈 折率,低波長分散(高アッベ数)が要求される.高分子の屈折率 (*n*)を上げるには,Lorentz-Lorenz 式に従い,van der Waals 体積(Vvdw)あたりの分子分極率(α/Vvdw)または凝集係数(Kp)を 上げる必要がある.最近,われわれは硫黄含有率の高い全芳香 族ポリイミド(PI)(Scheme1)が波長(λ):633 nmで1.7を超える 屈折率を示すことを報告した¹⁾.光学材料としては,可視から 近赤外領域における屈折率(*n*)の波長依存性(波長分散)の評価が 不可欠であることから,本研究では,主鎖にスルフィド基やチ アントレン骨格を有する各種 PIの屈折率の波長分散を評価し, 分子構造との関係性を考察した.また,密度汎関数(DFT)計算 より求めた分子分極率と van der Waals 体積から,屈折率と分子 鎖の凝集状態との関連性についても考察した.

[実験] λ =633, 845, 1324 nm での面内(n_{TE})及び面外(n_{TM})の屈 折率を Prism Coupler法 (Metricon PC-2010) により測定し, 屈 折率平均値: $n_{\lambda} \left(=\sqrt{(2n_{\text{TE}}^2+n_{\text{TM}}^2)/3}\right)$ を求め, 単純 Cauchy 式 ($n_{\lambda}=n_{\infty}+C/\lambda^2$) で近似した. これにより, 吸収の影響がない無限 波長での屈折率: n_{∞} と分散係数 *C* を評価できる.

[結果・考察] Fig.1 に酸無水物として sBPDA を固定, ある いはジアミンとしてAPTTを固定した場合における各種PIの吸 収スペクトルと屈折率を示す.最高の屈折率は 3SDEA/APTT(n₆₃₃=1.76)で得られ,他の PI を含め含硫黄 PI の n_∞ は従来の高屈折材料に比して高い.ただし、全芳香族 PI では可 視短波長での光透過性がやや不十分である.この領域の透過性 向上には脂環式酸無水物(CBDA, CHDA)の使用が有効だが, n₆₃₃ は約1.7まで低下する. PI における n_∞と C の関係は既報の n_∞と Cの線形関係²⁾にほぼ一致しており,高屈折の PI ほど大きな 波長分散性を示した.ただし,吸収端が短波長側にある ODPA 由来の PI は他の PI に比べて低い分散性を示す.一方, Fig.2 に 示すように酸無水物を固定した場合には硫黄の含有量(S%)と n_∞に、ほぼ線形の関係が見られるが、これは-S-結合の増加によ り実体積(Vint)あたりの分極率α/Vintが増加し、それが屈折率に反 映されたものと考えられる. sBPDA 由来の PI は他の酸無水物 由来の PI に比して顕著に高い n_∞を示しているが、これはα/Vint が高いとともに, sBPDA 近傍の稠密な凝集状態が原因と考えら れ, n_∞(実測)とα(計算)から求めた K_p値もこの傾向を支持して いる. Fig.2 の関係からは各酸無水物の個性を知ることができ, 例えば、脂環式酸無水物と他の芳香族酸無水物では関係性が明 確に異なり、また 3SDEA の使用が高屈折率 PI の設計に有効で ある. 次に DFT 計算を用いて, PI のモデル化合物の分子分極 率を計算した. 屈折率は分子分極率(a), van der Waals 体積,分 子の凝集状態を表す Kpによって決まる. Kpは過去に報告され た値³⁾(K_p=0.60)を仮定したが,屈折率の実測値は計算値よりも 系統的に小さな値となった.この差異は含硫黄 PI の実際の Kn が他の PI の値よりも小さいことに起因している. つまり, 含硫 黄 PI は複数のベンゼン環がスルフィド結合で結合した嵩高い

Fig.1 Wavelength dispersions of refractive indices and optical absorption spectra of sBPDA(top) APTT(bottom) derived PIs.

Fig.2 Plots of the refractive indices at the infinite wavelength vs. sulfur contents for all PIs.

構造を有するため,他の PI に比べて疎な凝集状態を形成していることを示している.

1) J. G. Liu, Y. Nakamura, Y. Shibasaki, S.Ando, M. Ueda, *Macromolecules*, **40**, 4614 (2007) 2) S. Ando, et al., *Jpn. J. Appl. Phys.*, **41**, 5254 (2002) 3) Y. Terui, S. Ando, *J. Polym. Sci. Part B: Polym. Phys.*, **42**, 2354-2366 (2004).